
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

FASCICLE V, TECHNOLOGIES IN MACHINEBUILDING,

ISSN 2668-4829 (PRINT) 2668-4888 (ONLINE)

https://doi.org/10.35219/tmb.2024.1.04

NUMERICAL REPRESENTATION OF OBJECTS –

REPRESENTATION OF 3D BODIES

Răzvan-Sebastian CRĂCIUN1, Virgil-Gabriel TEODOR1

1Department of Manufacturing Engineering, “Dunarea de Jos” University of Galati, Romania

email: razvan.craciun@ugal.ro

ABSTRACT
We are familiar with everything necessary to create the image of a point or a line

in digital environment, and we can represent many points in both 2D and 3D. In order

for these sets of points, projected in a design software, to be transformed into

somewhat suggestive images of solid objects, it is necessary to know the order in

which certain points must be connected by segments or curves, thus suggesting

constructive surfaces to the operator. The information needed to build a body image

is stored in a "database", having a very well-defined ordered structure of numbers

and characters. The structure of the database strongly influences the speed of work,

the required memory of the program, its flexibility, as well as the ease of writing the

program. This paper presents some common ways of organizing data to generate

different types of simple representations in ascending order of complexity.

KEYWORDS: point cloud, wireframe, polygon mesh, curves and

curved surfaces.

1. INTRODUCTION

We are familiar with everything needed to create the

image of a point or line in a digital environment, which

allows us to represent a large number of points in both

2D and 3D.

In order for these sets of points projected in a design

software to be transformed into the most suggestive

possible images of solid objects, it is necessary to know

the order in which certain points must be joined

together by segments or curves, thus suggesting

constructive surfaces to the operator.

The information required to build a body image is

stored in a "database", having a very well-defined

ordered structure of numbers and characters. Its

structure strongly influences the speed of work, the

memory required by the program, its flexibility, as well

as the ease of writing the program [1].

This paper presents some common ways of

organizing data to generate different types of simple

representations, listed in increasing order of

complexity.

2. VARIOUS NUMERICAL

REPRESENTATIONS OF 3D OBJECTS

2.1. In the form of a cloud of points

The numerical model of a surface consists of the

coordinates of a set of points chosen on that surface to

describe it as accurately as possible.

If the object to be modeled has surfaces composed

of flat facets, an exact model of it can be obtained using

the coordinates of the vertices of these facets.

However, since many real-world bodies that need

to be modeled have curved surfaces, the models are in

most cases approximate. Of course, the approximation

can be made as accurate as possible, which is why there

are numerically controlled machining centers for 3D

curved surfaces, which, based on the coordinates of a

point cloud, physically create the projected surface

with the desired precision.

For the set of points that model a body, typically its

surface, we can set 2 types of conditions [1]:

1) The surface of the body must actually pass

through the given points.

2) The distance between the real surface and the

points defining the model must not exceed a

user-imposed limit.

This type of representation was initially used in

medicine and chemistry and was later adopted in other

application areas of interactive graphics.

mailto:razvan.craciun@ugal.ro

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V

24

The basic element of many data structures used in

computer graphics, and the only one used for point

representation, is the vertex list. A vertex, or branching

node, is a point on the surface of a model where several

lines used in the representation of that body meet. The

term has also been extended to point representation,

where no lines appear as elements of the resulting

drawing.

A vertex list begins by specifying the total number

of points, and then, for each point, its 3D coordinates

are provided. In the case of the tetrahedron in Figure 1,

the vertex list has the form:

Fig. 1. List of vertices of the tetrahedron [1]

{

[1] 𝑥1 𝑦1 𝑧1
[2] 𝑥2 𝑦2 𝑧2
[3] 𝑥3 𝑦3 𝑧3
[4] 𝑥4 𝑦4 𝑧4

The vertex list can be either complete or truncated:

- A complete list contains the coordinates of all

points that describe the body.

- A truncated list includes information about

only a subset of points, as well as other

information needed to determine the

coordinates of the remaining points using

symmetries, rotations, translations, and

scaling.

Fig. 2. Body defined in a Cartesian system xOyz

As an example, we can consider the body in Figure

2, defined in a Cartesian reference frame xOyz

(defining reference frame). A truncated list of vertices,

in the composition of which symmetry with respect to

the yOz plane is taken into account, does not include

the coordinates of points P5 and P9.

However, it is necessary to group the points into

parallel cross-sections and specify that the number of

points that make up each section.

2.2. Wireframe

The name "wireframe" comes from the similarity

between this type of representation and a model of the

object created in the form of a wireframe. In wireframe

representation, the concepts of volume and surface are

not used. A body is represented as a set of line

segments or portions of curves.

For wireframe representations composed of line

segments, we have the following forms of data storage

for creating a wireframe representation of an object:

a) Explicit segments – In this form, an object is

seen as a collection of segments, for which the total

number of elements is known. For each segment, the

following information is specified:

[i] – optional segment index,

x1, y1, z1, x2, y2, z2 – the coordinates of the segment’s

endpoints.

Since the coordinates of the endpoints are specified

in the segment list, a vertex list is not used. The method

requires a relatively large amount of memory, since 6

coordinates are specified for each segment.

Additionally, when a curve is composed of several

concatenated segments, many points may appear at

least 2 times in the list.

For example, consider the body in Figure 3. The

corresponding data structure will have the following

form:

𝑆𝑒𝑔𝑚𝑒𝑛𝑡 1. 𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 2. 𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 3. 𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 4. 𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 5. 𝑥2 𝑦2 𝑧2 𝑥6 𝑦6 𝑧6
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 6. 𝑥3 𝑦3 𝑧3 𝑥7 𝑦7 𝑧7
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 7. 𝑥4 𝑦4 𝑧4 𝑥8 𝑦8 𝑧8
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 8. 𝑥5 𝑦5 𝑧5 𝑥9 𝑦9 𝑧9
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 9. 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 10. 𝑥3 𝑦3 𝑧3 𝑥4 𝑦4 𝑧4
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 11. 𝑥4 𝑦4 𝑧4 𝑥5 𝑦5 𝑧5
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 12. 𝑥5 𝑦5 𝑧5 𝑥2 𝑦2 𝑧2
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 13. 𝑥6 𝑦6 𝑧6 𝑥7 𝑦7 𝑧7
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 14. 𝑥7 𝑦7 𝑧7 𝑥8 𝑦8 𝑧8
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 15. 𝑥8 𝑦8 𝑧8 𝑥9 𝑦9 𝑧9
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 16. 𝑥9 𝑦9 𝑧9 𝑥6 𝑦6 𝑧6

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

25

b). Implicit segments – In this form, each segment

is specified by a pair of indices that identify its

endpoints in a list of vertices. The amount of memory

required is reduced compared to the previously

presented form.

Fig. 3. Model of the object made in the form of a

wireframe

The data structure for the object in Figure 3 has the

following form:

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

{

1 𝑥1 𝑦1 𝑧1
2 𝑥2 𝑦2 𝑧2
3 𝑥3 𝑦3 𝑧3
4 𝑥4 𝑦4 𝑧4
5 𝑥5 𝑦5 𝑧5
6 𝑥6 𝑦6 𝑧6
7 𝑥7 𝑦7 𝑧7
8 𝑥8 𝑦8 𝑧8
9 𝑥9 𝑦9 𝑧9

1 1 2
2 1 3
3 1 4
4 1 5
5 2 6
6 3 7
7 4 8
8 5 9
9 2 3
10 3 4
11 4 5
12 5 2
13 6 7
14 7 8
15 8 9
16 9 6

c). Lines given by indices – When a polygonal line

can be described by concatenating a string of segments,

it is more appropriate to use the following type of data

structure for the object in Figure 3:

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

{

1 𝑥1 𝑦1 𝑧1
2 𝑥2 𝑦2 𝑧2
3 𝑥3 𝑦3 𝑧3
4 𝑥4 𝑦4 𝑧4
5 𝑥5 𝑦5 𝑧5
6 𝑥6 𝑦6 𝑧6
7 𝑥7 𝑦7 𝑧7
8 𝑥8 𝑦8 𝑧8
9 𝑥9 𝑦9 𝑧9

1. 5 6 2 1 3 7
2. 5 9 5 1 4 8
3. 5 2 3 4 5 2
4. 5 6 7 8 9 6

Here, each line is described as follows:

[i] – optional line index.

np – number of points on the line.

j1, j2, ... ,jnp – indices that locate the ends of the

segments that make up the line in the vertex list.

d). Cross-sections and longitudinal lines – The

procedure is the same as for lines given by indices, but

most of the cross-sections are those for which the

database structure was previously presented.

The database for the body in Figure 3 is as follows:

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

{

1 𝑥1 𝑦1 𝑧1
2 𝑥2 𝑦2 𝑧2
3 𝑥3 𝑦3 𝑧3
4 𝑥4 𝑦4 𝑧4
5 𝑥5 𝑦5 𝑧5
6 𝑥6 𝑦6 𝑧6
7 𝑥7 𝑦7 𝑧7
8 𝑥8 𝑦8 𝑧8
9 𝑥9 𝑦9 𝑧9

1, 4, 4 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

5, 6, 2, 1, 3, 7 − 𝑐𝑢𝑟𝑣𝑒 1
5, 9, 5, 1, 4, 8 − 𝑐𝑢𝑟𝑣𝑒 2

If a set of points that constitute the successive ends

of concatenated segments are collinear, obviously, it is

sufficient to specify only the extremities of the

polygonal line with this property.

Although wireframe representation is somewhat

simplistic and does not provide complete information

on the geometry of the body, due to its ease of use and

the speed of displaying the representation, it is widely

used today. By using the wireframe technique, high

work speeds and even interesting animation effects can

be achieved using less sophisticated materials.

2.3. Polygon network

The "wireframe" representation of a 3D object does not

allow for the definition of surfaces and, therefore, the

calculation of areas, volumes, masses, centers of

gravity, or the display of the visible portion of the

analyzed object on screen. Simple representations that

allow for the recognition of surfaces and the

performance of calculations related to these surfaces

are obtained through 2 body modeling processes:

surface modeling and solid modeling. In the first case,

a body is modeled by specifying its boundary,

effectively modeling a surface. The latter can be

obtained as the surface of a polyhedron, composed of a

network of flat polygonal facets, or as a curved surface

in space, composed of portions or "patches" of curved

surfaces. [3]

In the case of solid modeling, the body is "built" by

joining elementary volumes- such as cubes, pyramids,

tetrahedra, spheres, and cylinders - that approximate

the desired shape as closely as possible. Both processes

fall under the more general class of geometric

modeling, also called shape modeling. [4]

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V

26

Polyhedral or polygon mesh representation

involves modeling 3D objects using one or more

polyhedral surfaces. Each polyhedral surface is treated

as a collection of adjacent planar polygonal facets. If

the real object has curved surfaces, its polygonal model

will, of course, be an approximation. This

approximation can be made as good as possible by

increasing the number of planar polygonal facets that

model a curved surface. The disadvantage is an

increased memory requirement, but it is worth

remembering that algorithms for processing planar

polygonal surfaces are much simpler than those for

curved surfaces. [5]

For this reason, most applications that do not

require the actual processing of the analyzed body rely

on polyhedral modeling, making a compromise

between precision on the one hand, required volume of

memory, simplicity and speed of work, on the other

hand.

The approximation of a curved profile by a

polygonal line is represented in Figure 4 a), and the

approximation of a curved surface by a polyhedral

surface in Figure 4 b). [6]

Fig. 4. Approximation of a curved profile by a

polygonal line (a) and Approximation of a curved

surface by a polyhedral surface (b)

As basic elements for polyhedral modeling, we

encounter again the list of vertices. This time, the

points whose coordinates are written in the list will

represent the vertices of the polyhedron. These,

together with the edges and faces of the polyhedron,

constitute the defining elements of the polygonal mesh.

Depending on the requirements of the program we

are developing, we can store the information necessary

to represent polygonal vertices, edges, and facets in

various ways.

The criteria by which we choose the form of data

storage mainly concern 2 features of the program: the

amount of memory required and the speed of operation.

Since increasing speed typically requires more

memory, we usually resort to compromises: we first

determine the type of computer for which we are

writing the application, and then, depending on the

available memory and the maximum complexity that

we expect for the bodies that we will have to model, we

choose the form of data storage. To increase the speed

of work, it is useful to be able to quickly and easily

identify the following:

a) The edges of a given polygon.

b) The endpoints of a given edge.

c) Polygons that have a given side in

common.

d) Edges that converge at a vertex.

It is also necessary to choose an order of

representation of the facets so that the observer can

better understand the depth relationships between them

(dynamic construction).

When working with a polygonal network, it is

essential to traverse all the facets of the network one by

one, for example, in a loop. The vertices of a facet can

be specified in 2 ways:

1. Explicitly, where the vertices that define a facet

are read either as indices in the vertex list or by

coordinates.

2. Implicitly, where the vertices that define a facet

are determined as indices in the vertex list based on an

algorithm for "traversing" this list.

The first method has the advantage of being faster,

but the memory required is generally larger. We will

refer to this as “read-through facet traversal”. The

second variant is much slower, but also has much lower

memory consumption. We will refer to it as “generate

facet traversal”.

2.4. Curves and curved surfaces

Curved shapes are more difficult to represent, but

are particularly useful in computer-aided processing, as

well as in applications where precise calculations are

required. Various models may require the

representation of curved curves and/or surfaces in 3

dimensions. To simplify calculations, parametric

representations of these geometric varieties are used.

The curves or surfaces can then be described by

traversing the domain of definition of the parameters

usually used, namely the interval [0,1], with a

conveniently chosen step. [4,7]

Cubic parametric curves
It can be shown that cubic parametric functions, in

which the parameters appear to the 3rd power, have the

minimum degree necessary to satisfy 2 conditions: the

represented 3D curve must pass through 2 points and

have given tangents at those points (Figure 5).

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

27

Fig. 5. Cubic parametric curves

Curve C is described by the relationships:

 {

𝑥(𝑡) = 𝑎𝑥𝑡
3 + 𝑏𝑥𝑡

2 + 𝑐𝑥𝑡 + 𝑑𝑥
𝑦(𝑡) = 𝑎𝑦𝑡

3 + 𝑏𝑦𝑡
2 + 𝑐𝑦𝑡 + 𝑑𝑦

𝑧(𝑡) = 𝑎𝑧𝑡
3 + 𝑏𝑧𝑡

2 + 𝑐𝑧𝑡 + 𝑑𝑧

 (1)

Where 𝑡 is a parameter between 0 and 1,

(𝑡 ∈ [0, 1]).
The tangent vector to the curve in

𝑥(𝑡∗), 𝑦(𝑡∗), 𝑧(𝑡∗) has the components:

 𝑙 =
𝑑𝑥

𝑑𝑡
|
𝑡∗
, 𝑚 =

𝑑𝑦
𝑑𝑡
|
𝑡∗

, 𝑛 =
𝑑𝑥
𝑑𝑡
|
𝑡∗

 (2)

That is:

 {

𝑙∗ = 3𝑎𝑥𝑡∗
2 + 2𝑏𝑥𝑡∗ + 𝑐𝑥

𝑚∗ = 3𝑎𝑦𝑡∗
2 + 2𝑏𝑦𝑡∗ + 𝑐𝑦

𝑛∗ = 3𝑎𝑧𝑇∗
2 + 2𝑏𝑧𝑡∗ + 𝑐𝑧

 (3)

We notice that the relationships have the same form

for x, y and z. It will therefore suffice to analyze a

function of the form:

 𝐾(𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑 (4)

For which the derivative is:

 𝐾 =
𝑑𝐾

𝑑𝑡
= 3𝑎𝑡2 + 2𝑏𝑡 + 𝑐 (5)

For the purpose of finding the values of a, b, c and

d.

𝐾(𝑡) can then be replaced by 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) and a,

b, c, and d with the corresponding coefficients. There

are a number of ways to define cubic parametric

curves. Of these, 3 types are analyzed: the Hermite

form, the Bezier form and the B-Spline form.

a. 3D curves in Hermite form

For the situation in Figure 5, in order to obtain the

Hermite form, the following conditions are imposed:

- The ends of the curve should coincide with

points A and B.

- The tangents to the curve at its extreme points

should coincide with vectors TA and TB.

As t varies between 0 and 1, for point 𝐴, 𝑡 = 0 and

for points 𝐵, 𝑡 = 1, these conditions will be written as

follows:

1)

𝑥(0) = 𝑥𝐴 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑥(1) = 𝑥𝐵
𝑦(0) = 𝑦𝐴 𝑦(1) = 𝑦𝐵
𝑧(0) = 𝑧𝐴 𝑧(1) = 𝑧𝐵

 2)

𝑑𝑥

𝑑𝑡
|
0
= 𝑙𝐴 ș𝑖

𝑑𝑥

𝑑𝑡
|
1
= 𝑙𝐵

𝑑𝑦

𝑑𝑡
|
0
= 𝑚𝐴

𝑑𝑦

𝑑𝑡
|
1
= 𝑚𝐵

𝑑𝑧

𝑑𝑡
|
0
= 𝑛𝐴

𝑑𝑧

𝑑𝑡
|
1
= 𝑛𝐵

 (6)

Taking into account the form of cubic functions, we

will have:

 1)

𝑑𝑥 = 𝑥𝐴 ș𝑖 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑𝑥 = 𝑥𝐵
𝑑𝑦 = 𝑦𝐴𝑎𝑦 + 𝑏𝑦 + 𝑐𝑦 + 𝑑𝑦 = 𝑦𝐵
𝑑𝑧 = 𝑧𝐴𝑎𝑧 + 𝑏𝑧 + 𝑐𝑧 + 𝑑𝑧 = 𝑧𝐵

 2)

𝑐𝑥 = 𝑙𝐴3𝑎𝑥 + 2𝑏𝑥 + 𝑐𝑥 = 𝑙𝐵
𝑐𝑦 = 𝑚𝐴3𝑎𝑦 + 2𝑏𝑦 + 𝑐𝑦 = 𝑚𝐵

𝑐𝑧 = 𝑛𝐴3𝑎𝑧 + 2𝑏𝑧 + 𝑐𝑧 = 𝑛𝐵

 (7)

Considering the general form 𝐾(𝑡) = 𝑎𝑡
3 + 𝑏𝑡2 +

𝑐𝑡 + 𝑑, we will obtain 3 systems of the type:

 {

𝑑 = 𝑃𝐴
𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑃𝐵

𝑐 = 𝑇𝐴
3𝑎 + 2𝑏 + 𝑐 = 𝑇𝐵

 (8)

Where PA and PB are position components relative

to the ends A and B, respectively, and TA and TB are the

components of the tangents to the curve at A and B.

Considering the above system with the unknowns

a, b, c and d, it can be written in the form:

 [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] = [

0
1
0
3

0
1
0
2

0
1
1
1

1
1
0
0

] × [

𝑎
𝑏
𝑐
𝑑

] (9)

Relationship found in the literature in the following

form:

 [𝐺ℎ] = [𝑀ℎ]
−1 × [𝐶] (10)

By inverting the matrix [𝑀ℎ]
−1 and multiplying the

above relation by the calculated inverse, we obtain the

relation for calculating the coefficients a, b, c, and d:

[

𝑎
𝑏
𝑐
𝑑

] = [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

]

𝑜𝑟
[𝐶] = [𝑀ℎ] × [𝐺ℎ]

 (11)

[𝑀ℎ] is called the Hermite matrix and [𝐺ℎ] is a

geometric component of Hermite form.

If we denote by [𝑇] the line vector [𝑡3, 𝑡2, 𝑡, 1],
then:

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V

28

𝐾(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] [

𝑎
𝑏
𝑐
𝑑

] = [𝑇] × [𝐶] =

= [𝑇] × [𝑀ℎ] × [𝐺ℎ]

 (12)

Replacing 𝐾(𝑡) with each of the coordinates, we

will obtain the final relations:

𝑥(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑋𝐴
𝑋𝐵
𝑙𝐴
𝑙𝐵

]

𝑦(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑌𝐴
𝑌𝐵
𝑚𝐴
𝑚𝐵

]

𝑧(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑍𝐴
𝑍𝐵
𝑛𝐴
𝑛𝐵

]

(13)

The factors TA and TB must have the same order of

magnitude as PA and PB.

b. 3D curves in the form of Bezier

Unlike the Hermite shape, the Bezier shape has a

control interval corresponding to the variation of the

parameter t from 0 to 1, in which there are 4 control

points. The first and last points specify the ends of the

interval, while the additional points (compared to the

Hermite shape) determine, together with the ends, the

direction of the tangents, as shown in Figure 6.

Fig. 6.3D curves in the form of Bezier

The conditions that the curve must meet will be

written:

1.

𝑥(0) = 𝑥𝐴𝑥(1) = 𝑥𝐵
𝑦(0) = 𝑦𝐴𝑎𝑛𝑑𝑦(1) = 𝑦𝐵
𝑧(0) = 𝑧𝐴𝑧(1) = 𝑧𝐵

2.

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚𝑎𝑛𝑑�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

 (14)

Where m is called the form factor.

Using the general form 𝐾(𝑡) = 𝑎𝑡
3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑,

so𝐾(𝑡) =
𝑑𝐾

𝑑𝑡
= 3𝑎𝑡2 + 2𝑏𝑡 + 𝑐, these conditions lead

to writing systems of the form:

{

𝐾(0) = 𝑃𝐴
𝐾(1) = 𝑃𝐵

𝐾(0) = (𝑃𝐸 − 𝑃𝐴) × 𝑚

𝐾(1) = (𝑃𝐵 − 𝑃𝐹) × 𝑚

→

{

𝑑 = 𝑃𝐴
𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑃𝐵
𝐶 = (𝑃𝐸 − 𝑃𝐴) × 𝑚

3𝑎 + 2𝑏 + 𝑐 = (𝑃𝐵 − 𝑃𝐹) × 𝑚

 (15)

The system is analogous to the one obtained in the

Hermite form, if we make the substitutions:

 𝑇𝐴 = (𝑃𝐸 − 𝑃𝐴) × 𝑚, 𝑇𝐵 = (𝑃𝐵 − 𝑃𝐹) × 𝑚 (16)

The transition from the geometric component of

Bezier shape to the geometric component of Hermite

shape is therefore done with the relationship:

 {

𝑃𝐴 = 𝑃𝐴
𝑃𝐵 = 𝑃𝐵

𝑇𝐴 = (𝑃𝐸 − 𝑃𝐴) × 𝑚

𝑇𝐵 = (𝑃𝐵 − 𝑃𝐹) × 𝑚

 𝑜𝑟 [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] =

[

1
0
−𝑚
0

0
0
𝑚
0

0
0
0
−𝑚

0
1
0
𝑚

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

] (17)

For the normal Bezier shape, we work with 𝑚 = 3,

so:

 [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] = [

1
0
−3
0

0
0
3
0

0
0
0
−3

0
1
0
3

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

] 𝑜𝑟 [𝐺ℎ] =

[𝑀ℎ𝑏] × [𝐺𝑏] (18)

Where [𝑀ℎ𝑏] is the transition matrix from Hermite

form to Bezier form.

We can write:

 [𝐶] = [𝑀ℎ] × [𝐺ℎ] = [𝑀ℎ] × [𝑀ℎ𝑏] × [𝐺𝑏] (19)

Respectively:

𝐾(𝑡) = [𝑇] × [𝐶] = [𝑇] × [𝑀ℎ] × [𝑀ℎ𝑏] × [𝐺𝑏] (20)

We denote the product [𝑀ℎ] × [𝑀ℎ𝑏] by [𝑀𝑏].

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

29

This matrix is called the Bezier matrix:

[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

] × [

1
0
−3
0

0
0
3
0

0
0
0
−3

0
1
0
3

] =

= [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

]

𝑆𝑜 [𝑀𝑏] = [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

]

 (21)

The general form of the Bezier calculation

relationship for the value of a coordinate is:
𝐾(𝑡) = [𝑇] × [𝑀𝐵] × [𝐺𝑏] =

= [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

]
 (22)

Fig. 7. Bezier curve

By substitution, we obtain the relations:

𝑥(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑥𝐴
𝑥𝐸
𝑥𝐹
𝑥𝐵

]

𝑦(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑦𝐴
𝑦𝐸
𝑦𝐹
𝑦𝐵

]

𝑧(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑧𝐴
𝑧𝐸
𝑧𝐹
𝑧𝐵

]

 (23)

For several adjacent Bezier curve segments to form

a continuous curve, it is necessary that at the junction

point, the tangents be parallel. Therefore, the points F1,

B1, and E2 (in Figure 8) must be collinear.

For the representation on the screen, the procedure

is the same as for Hermite curves, but the coordinates

of 4 points are used for each control interval.

c. 3D curves in the form of B-Spline

B-Spline curves use a sequence of n control points

𝑃1, 𝑃2, … , 𝑃𝑛 through which, in the general case, they

do not pass. The calculations of the coordinates of the

intermediate points are made using a formula of the

well-known form:

 𝐾𝑖,𝑖+1(𝑡) = [𝑇] × [𝑀𝑆] × [𝐺𝑆]
𝑖,𝑖+1 (24)

The indices 𝑖, 𝑖 + 1 show us that the formula is used

for approximation between the control points 𝑃𝑖 and

𝑃𝑖+1 with 𝑖 ∈ [2, 𝑛 − 2].
[𝑀𝑆] is the Spline matrix and has the form:

 [𝑀𝑆] =
1

6
[

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] (25)

[𝐺]𝑖, 𝑖+1 is the geometric component of the B-

Spline shape used between points 𝑃𝑖 and 𝑃𝑖+1. To

determine the shape of the curve between 𝑃𝑖 and 𝑃𝑖+1,

the B-Spline shape uses the coordinates of points 𝑃𝑖−1,

𝑃𝑖 , 𝑃𝑖+1 and 𝑃𝑖+2.

 [𝐺𝑆]
𝑖,𝑖+1 = [

𝑃𝑖−1
𝑃𝑖
𝑃𝑖+1
𝑃𝑖+2

] (26)

The formulas for calculating the coordinates are:

{

𝑥(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑥𝑖−1
𝑥𝑖
𝑥𝑖+1
𝑥𝑖+2

] ×
1

6

𝑦(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑦𝑖−1
𝑦𝑖
𝑦𝑖+1
𝑦𝑖+2

] ×
1

6

𝑧(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑧𝑖−1
𝑧𝑖
𝑧𝑖+1
𝑧𝑖+2

] ×
1

6

 (27)

3D bicubic surfaces – Using 2 families of 3D cubic

curves, we can define a curved surface in space, as seen

in Figure 8. [7]

Fig. 8. 3D bicubic surfaces

The family of 3D Cubic curves C can be obtained

by introducing into the equation: 𝑥 = 𝑥(𝑡), 𝑦 =
𝑦(𝑡), and 𝑧 = 𝑧(𝑡), another parameter s that varies

between 0 and 1.

The curves in the C family are obtained for various

values of s.

Analogously, the curves in the D family are

obtained by introducing into the equations: 𝑥 = 𝑥(𝑠),

THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V

30

𝑦 = 𝑦(𝑠), and 𝑧 = 𝑧(𝑠), another parameter t varying

between 0 and 1.

In order to define a surface using the two families

of curves, there must be a common form of their

equations written with 2 parameters: 𝑥 = 𝑥(𝑠, 𝑡), 𝑦 =
𝑦(𝑠, 𝑡), and 𝑧 = 𝑧(𝑠, 𝑡). These relations represent the

equations of a 3D curved surface, called a bicubic

surface (bi = has 2 parameters; cubic = each of the

surface parameters appears to the maximum power of

3).

The accuracy of the surface rendering depends on

the choice of step sizes 𝑝𝑠 and 𝑝𝑡. Usually, 𝑝𝑠 = 𝑝𝑡 is

used, and the general form of the expression of a

coordinate function of the parameters 𝑠 and 𝑡 is:

𝐾(𝑠, 𝑡) = 𝑎11𝑠
3𝑡3 + 𝑎12𝑠

3𝑡2 + 𝑎13𝑠
3𝑡 + 𝑎14𝑠

3 +

 +𝑎21𝑠
2𝑡3 + 𝑎22𝑠

2𝑡2 + 𝑎23𝑠
2𝑡 + 𝑎24𝑠

2 +

 +𝑎31𝑠𝑡
3 + 𝑎32𝑠𝑡

2 + 𝑎33𝑠𝑡 + 𝑎34𝑠 +

 +𝑎41𝑡
3 + 𝑎42𝑡

2 + 𝑎43𝑡 + 𝑎44 (28)

If we note:

[𝐶] = [

𝑎11
𝑎21
𝑎31
𝑎41

𝑎12
𝑎22
𝑎32
𝑎42

𝑎13
𝑎23
𝑎33
𝑎43

𝑎14
𝑎24
𝑎34
𝑎44

] , [𝑆] = [𝑠3𝑠2 𝑠 1] (29)

and [𝑇] = [𝑡3 × 𝑡2 × 𝑡 × 1], the above relationship

becomes: 𝐾(𝑠, 𝑡) = [𝑆] × [𝐶] × [𝑇]𝑇 . As with 3D

curves, 3D curved surfaces can be defined in the

Hermite, Bezier, and B-Spline forms.

a) Bicubic surfaces in Hermite form

A Hermite bicubic surface is defined by 4 points in

space, usually denoted 𝑃00, 𝑃01, 𝑃10, and 𝑃11,

corresponding to the extreme values (0 and 1) for s and

t, as well as by 3 tangents to the surface at each of these

points.

The situation is presented in Figure 9.

Fig. 9. Bicubic surfaces in Hermite form

Each tangent vector has components determined by

the 1st and 2nd order derivatives of the functions 𝑥 =
𝑥(𝑠, 𝑡), 𝑦 = 𝑦(𝑠, 𝑡), 𝑧 = 𝑧(𝑠, 𝑡).

𝑃00(𝑥(0, 0), 𝑦(0, 0), 𝑧(0, 0))

𝑃10(𝑥(1, 0), 𝑦(1, 0), 𝑧(1, 0))

𝑃01(𝑥(0, 1), 𝑦(0, 1), 𝑧(0, 1))

𝑃11(𝑥(1, 1), 𝑦(1, 1), 𝑧(1, 1))

𝑇𝑠𝑖𝑗 = (
𝑑𝑥

𝑑𝑠
|
𝑖,𝑗
,
𝑑𝑦

𝑑𝑠
|
𝑖,𝑗
,
𝑑𝑧

𝑑𝑠
|
𝑖,𝑗
)

𝑇𝑡𝑖𝑗 = (
𝑑𝑥

𝑑𝑡
|
𝑖,𝑗
,
𝑑𝑦

𝑑𝑡
|
𝑖,𝑗
,
𝑑𝑧

𝑑𝑡
|
𝑖,𝑗
)

𝑇𝑠𝑡𝑖𝑗 = (
𝑑2𝑥

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
,
𝑑2𝑦

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
,
𝑑2𝑧

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
)

 (30)

The conditions required for a Hermite surface are:

1) Let it pass through the 4 points.

2) Let it have 3 tangents given at each of the

4 points.

That is:

1. {

𝑥(0, 0) = 𝑥00
𝑦(0, 0) = 𝑦00
𝑧(0, 0) = 𝑧00

{

𝑥(1, 0) = 𝑥10
𝑦(1, 0) = 𝑦10
𝑧(1, 0) = 𝑧10

{

𝑥(0, 1) = 𝑥01
𝑦(0, 1) = 𝑦01
𝑧(0, 1) = 𝑧01

𝑎𝑛𝑑 {

𝑥(1, 1) = 𝑥11
𝑦(1, 1) = 𝑦11
𝑧(1, 1) = 𝑧11

2.

{

𝑑𝑥

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑥

𝑑𝑠
)
𝑖,𝑗

𝑑𝑦

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑦

𝑑𝑠
)
𝑖,𝑗

𝑑𝑧

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑧

𝑑𝑠
)
𝑖,𝑗

 𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1},

{

𝑑𝑥

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑥

𝑑𝑡
)
𝑖,𝑗

𝑑𝑦

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑦

𝑑𝑡
)
𝑖,𝑗

𝑑𝑧

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑧

𝑑𝑡
)
𝑖,𝑗

𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1}.

{

𝑑2𝑥

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑥

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑑2𝑦

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑦

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑑2𝑧

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑧

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1}.

 (31)

Using the general form of the relations for

determining the coordinates of points on a 3D bicubic

surface, we obtain:

{

𝐾(0, 0) = 𝑃00
𝐾(1, 0) = 𝑃10
𝐾(0, 1) = 𝑃01
𝐾(1, 1) = 𝑃11

,

{

𝑑𝐾

𝑑𝑠
|
0,0
= 𝑇𝑠 00

𝑑𝐾

𝑑𝑠
|
1,0
= 𝑇𝑠 10

𝑑𝐾

𝑑𝑠
|
0,1
= 𝑇𝑠 01

𝑑𝐾

𝑑𝑠
|
1,1
= 𝑇𝑠 11

,

{

𝑑𝐾

𝑑𝑡
|
0,0
= 𝑇𝑡 00

𝑑𝐾

𝑑𝑡
|
1,0
= 𝑇𝑡 10

𝑑𝐾

𝑑𝑡
|
0,1
= 𝑇𝑡 01

𝑑𝐾

𝑑𝑡
|
1,1
= 𝑇𝑡 11

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

31

 𝑎𝑛𝑑

{

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
0,0
= 𝑇𝑠𝑡 00

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
1,0
= 𝑇𝑠𝑡 10

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
0,1
= 𝑇𝑠𝑡 01

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
1,1
= 𝑇𝑠𝑡 11

 (32)

Here 𝑃00, 𝑃10, 𝑃01, 𝑎𝑛𝑑 𝑃11 are position constants,

and 𝑇𝑠𝑖𝑗 , 𝑇𝑡𝑖𝑗 , 𝑎𝑛𝑑 𝑇𝑠𝑡𝑖𝑗 are constants determined by

tangents.

Taking into account that:

 𝐾(𝑠, 𝑡) = 𝑎11𝑠
3𝑡3 + 𝑎12𝑠

3𝑡2 + 𝑎13𝑠
3𝑡 +

𝑎14𝑠
3 +

 +𝑎21𝑠
2𝑡3 + 𝑎22𝑠

2𝑡2 + 𝑎23𝑠
2𝑡 + 𝑎24𝑠

2 +

 +𝑎31𝑠𝑡
3 + 𝑎32𝑠𝑡

2 + 𝑎33𝑠𝑡 + 𝑎34𝑠 +

 +𝑎41𝑡
3 + 𝑎42𝑡

2 + 𝑎43𝑡 + 𝑎44 = [𝑆] × [𝐶] ×
[𝑇]𝑇 (33)

We have:

𝑑𝐾(𝑠, 𝑡)

𝑑𝑠
= 3𝑎11𝑠

2𝑡3 + 3𝑎12𝑠
2𝑡2 + 3𝑎13𝑠

2𝑡 + 3𝑎14𝑠
2 +

+2𝑎21𝑠𝑡
3 + 2𝑎22𝑠𝑡

2 + 2𝑎23𝑠𝑡 + 2𝑎24𝑠 +

+𝑎31𝑡
3 + 𝑎32𝑡

2 + 𝑎33𝑡 + 𝑎34
𝑑𝐾(𝑠, 𝑡)

𝑑𝑡
= 3𝑎11𝑠

3𝑡2 + 2𝑎12𝑠
3𝑡 + 𝑎13𝑠

3 +

+3𝑎21𝑠
2𝑡2 + 2𝑎22𝑠

2𝑡 + 𝑎23𝑠
2 +

+3𝑎31𝑠𝑡
2 + 2𝑎32𝑠𝑡 + 𝑎33𝑠 + 3𝑎41𝑡

2 + 2𝑎42𝑡 + 𝑎43
𝑑𝐾(𝑠, 𝑡)

𝑑𝑠𝑑𝑡
= 9𝑎11𝑠

2𝑡2 + 6𝑎12𝑠
2𝑡 + 3𝑎13𝑠

2 +

+6𝑎21𝑠𝑡
2 + 4𝑎22𝑠𝑡 + 2𝑎23𝑠 +

+3𝑎31𝑡
2 + 2𝑎32𝑡 + 𝑎33

 (34)

Proceeding further, as for 3D curves in Hermite

form, we will obtain a relationship of the form:

 𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝐻] × [𝑇]
𝑇 (35)

It can be demonstrated that:

 [𝑀𝐻] = [𝑀ℎ] × [𝑄ℎ] × [𝑀𝐻]
𝑇 (36)

Where [𝑀ℎ] is the Hermite matrix, and [𝑄ℎ] is a

Hermite geometry matrix that has the form:

 [𝑄ℎ] = [

𝑃00
𝑃10
𝑇𝑠00
𝑇𝑠10

𝑃01
𝑃11
𝑇𝑠01
𝑇𝑠11

𝑇𝑡00
𝑇𝑡10
𝑇𝑠𝑡00
𝑇𝑠𝑡10

𝑇𝑡01
𝑇𝑡11
𝑇𝑠𝑡01
𝑇𝑠𝑡11

] (37)

The final calculation relationships will be:

𝑥(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[

𝑥00
𝑥10
𝑑𝑥

𝑑𝑠00
𝑑𝑥

𝑑𝑠10

𝑥01
𝑥11
𝑑𝑥

𝑑𝑠01
𝑑𝑥

𝑑𝑠11

𝑑𝑥

𝑑𝑡00
𝑑𝑥

𝑑𝑡10
𝑑2𝑥

𝑑𝑠 𝑑𝑡00
𝑑2𝑥

𝑑𝑠 𝑑𝑡10

𝑑𝑥

𝑑𝑡01
𝑑𝑥

𝑑𝑡11
𝑑2𝑥

𝑑𝑠 𝑑𝑡01
𝑑2𝑥

𝑑𝑠 𝑑𝑡11]

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

𝑦(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[

𝑦00
𝑦10
𝑑𝑦

𝑑𝑠00
𝑑𝑦

𝑑𝑠10

𝑦01
𝑦11
𝑑𝑦

𝑑𝑠01
𝑑𝑦

𝑑𝑠11

𝑑𝑦

𝑑𝑡00
𝑑𝑦

𝑑𝑡10
𝑑2𝑦

𝑑𝑠 𝑑𝑡00
𝑑2𝑦

𝑑𝑠 𝑑𝑡10

𝑑𝑦

𝑑𝑡01
𝑑𝑦

𝑑𝑡11
𝑑2𝑦

𝑑𝑠 𝑑𝑡01
𝑑2𝑦

𝑑𝑠 𝑑𝑡11]

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

𝑧(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[

𝑧00
𝑧10
𝑑𝑧

𝑑𝑠00
𝑑𝑧

𝑑𝑠10

𝑧01
𝑧11
𝑑𝑧

𝑑𝑠01
𝑑𝑧

𝑑𝑠11

𝑑𝑧

𝑑𝑡00
𝑑𝑧

𝑑𝑡10
𝑑2𝑧

𝑑𝑠 𝑑𝑡00
𝑑2𝑧

𝑑𝑠 𝑑𝑡10

𝑑𝑧

𝑑𝑡01
𝑑𝑧

𝑑𝑡11
𝑑2𝑧

𝑑𝑠 𝑑𝑡01
𝑑2𝑧

𝑑𝑠 𝑑𝑡11]

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

 (38)

The continuity conditions at the junction of 2

Hermite surfaces are relatively simple: the ends of the

boundary curve must coincide, and the tangents to the

surfaces at these ends must be proportional.

b) Bicubic surfaces in Bezier form

As with 3D curves in the Bezier form, to define a

Bezier surface, we use the 4 control points

corresponding to the values
(0, 0), (0, 1), (1, 0), and (1, 1) of the s and t

parameters. Additionally, 12 other control points are

used through which the tangents to the surface are

specified (Figure 10).

Fig. 10. Bicubic surfaces in Bezier form

THE ANNALS OF ‘DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V

32

The geometry of a Bezier surface is therefore

characterized by the coordinates of 16 control points.

The Bezier geometry matrix (𝑄𝑏) will have the

form:

 [𝑄𝑏] = [

𝑃00
𝑃𝑡00
𝑃𝑡01
𝑃01

𝑃𝑠00
𝑃𝑠𝑡00
𝑃𝑠𝑡01
𝑃𝑠01

𝑃𝑠10
𝑃𝑠𝑡10
𝑃𝑠𝑡11
𝑃𝑠11

𝑃10
𝑃𝑡10
𝑃𝑡11
𝑃11

] (39)

The general form of the relationship used to

determine the coordinates corresponding to the pair of

parameters (𝑠, 𝑡) in the case of Bezier surfaces is:

𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [𝑄𝑏] × [𝑀𝑏]
𝑇 × [𝑇]𝑇 (40)

Substituting, we obtain the calculation relations:

𝑥(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑥00
𝑥𝑡00
𝑥𝑡01
𝑥01

𝑥𝑠00
𝑥𝑠𝑡00
𝑥𝑠𝑡01
𝑥𝑠01

𝑥𝑠10
𝑥𝑠𝑡10
𝑥𝑠𝑡11
𝑥𝑠11

𝑥10
𝑥𝑡10
𝑥𝑡11
𝑥11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

𝑦(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑦00
𝑦𝑡00
𝑦𝑡01
𝑦01

𝑦𝑠00
𝑦𝑠𝑡00
𝑦𝑠𝑡01
𝑦𝑠01

𝑦𝑠10
𝑦𝑠𝑡10
𝑦𝑠𝑡11
𝑦𝑠11

𝑦10
𝑦𝑡10
𝑦𝑡11
𝑦11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

𝑧(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑧00
𝑧𝑡00
𝑧𝑡01
𝑧01

𝑧𝑠00
𝑧𝑠𝑡00
𝑧𝑠𝑡01
𝑧𝑠01

𝑧𝑠10
𝑧𝑠𝑡10
𝑧𝑠𝑡11
𝑧𝑠11

𝑧10
𝑧𝑡10
𝑧𝑡11
𝑧11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

 (41)

Bezier surfaces pass through the four corner points
(𝑃00, 𝑃01, 𝑃10, and 𝑃11), and generally do not pass

through the other control points.

The problem of continuity between 2 connected

Bezier surfaces along an edge is solved by ensuring

collinearity for 4 pairs of 3 points.

The situation is shown in Figure 11.

Fig. 11. Continuity problem of 2 connected Bezier

surfaces

To ensure the continuity of the surfaces 𝑆1 and 𝑆2

along the curve (𝐶), we must choose the control points

so that the corresponding ones on the curve (𝐶) (for

both surfaces) coincide, and the triplets of points

𝑃1𝑃2𝑃3, 𝑃4𝑃5𝑃6, 𝑃7𝑃8𝑃9, and 𝑃10𝑃11𝑃12 are collinear.

c) Bicubic surfaces in B-Spline form

A bicubic surface in the form of a B-Spline is

defined by 16 control points, by analogy with 3D B-

Spline curves. The calculation relations for the

coordinates corresponding to the parameter pair (s, t)

have the general form:

 𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝑠] × [𝑄𝑠𝑖,𝑗+1;𝑖+1,𝑗+1
𝑖,𝑖;𝑖+1,𝑗] ×

[𝑀𝑠]
𝑇 × [𝑇𝑇] (42)

Here, the indices specify that the intermediate

points are calculated within the perimeter delimited by

the control points:

𝑃𝑖𝑗 , 𝑃𝑖+1, 𝑗, 𝑃𝑖, 𝑗+1, 𝑃𝑖+1, 𝑗+1, where 𝑖, 𝑗 ∈ [2, 𝑛 −

2]. This assumes that we use an 𝑛 × 𝑛 point grid to

describe the entire surface.

The situation is illustrated in Figure 12.

The 16 points that determine the matrix

[𝑄𝑠𝑖,𝑗+1 𝑖+1,𝑗+1
𝑖,𝑗 𝑖+1,𝑗] are:

[

𝑃𝑖−1,𝑗−1
𝑃𝑖,𝑗−1
𝑃𝑖+1,𝑗−1
𝑃𝑖+2,𝑗−1

𝑃𝑖−1,𝑗
𝑃𝑖,𝑗
𝑃𝑖+1,𝑗
𝑃𝑖+2,𝑗

𝑃𝑖−1,𝑗+1
𝑃𝑖,𝑗+1
𝑃𝑖+1,𝑗+1
𝑃𝑖+2,𝑗+1

𝑃𝑖−1,𝑗+2
𝑃𝑖,𝑗+2
𝑃𝑖+1,𝑗+2
𝑃𝑖+2,𝑗+2]

 (43)

A B-Spline surface does not generally pass through

the given control points.

Fig. 12. Bicubic surfaces in B-Spline form

3. CONCLUSIONS

The numerical representation of objects, particularly

that of 3D bodies, provides a powerful tool for

modeling, analyzing, and visualizing complex

structures. Through techniques such as discretization

and computational geometry, 3D bodies can be

accurately represented in digital form, enabling

advancements in fields such as engineering [8-12],

computer graphics, and scientific simulations. This

approach facilitates precise design, optimization, and

FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI

33

manipulation of objects, contributing to innovation

across multiple disciplines.

To elaborate further, this process involves

translating physical or conceptual structures into

mathematical models that can be processed, analyzed,

and visualized by computers. This process is central to

various industries, including manufacturing,

architecture, animation, and virtual reality.

The ability to numerically represent 3D bodies

opens up significant possibilities. For instance, in

engineering and product design, this representation

allows for precise simulations of how objects will

behave under different conditions, such as stress, heat,

or motion, before physical prototypes are created. This

reduces costs, accelerates the development process,

and improves product quality.

Overall, the representation of 3D bodies through

numerical methods not only enhances the accuracy and

efficiency of design and analysis, but also drives

innovation in both practical applications and creative

fields.

REFERENCES

[1] Dogaru D., Metode noi în proiectare, Elemente de grafică
tridimensională (New methods in design, Three-dimensional graphic

elements), Scientific and Encyclopedic Publishing House, Bucharest,

1988;
[2] Wolfgang Böhm, Generating the Bézier points of B-spline

curves and surfaces, Computer-Aided Design, Volume 13, Issue 6,

November 1981, Pages 365-366, https://doi.org/10.1016/0010-
4485(81)90213-X;

[3] M.I.G. Bloor, M.J. Wilson, Using partial differential

equations to generate free-form surfaces, Computer-Aided Design,
Volume 22, Issue 4, May 1990, Pages 202-212,

https://doi.org/10.1016/0010-4485(90)90049-I;

[4] Hoffmann, C., Hopcroft, J., Automatic surface generation
in computer aided design. The Visual Computer 1, 92–100 (1985).

https://doi.org/10.1007/BF01898351;

[5] T.S. Lan, S.H. Lo, Finite element mesh generation over

analytical curved surfaces, Computers & Structures, Volume 59,

Issue 2, 17 April 1996, Pages 301-309, https://doi.org/10.1016/0045-

7949(95)00261-8;
[6] Uri Itai, Nira Dyn, Generating surfaces by refinement of

curves, Journal of Mathematical Analysis and Applications, Volume

388, Issue 2, 15 April 2012, Pages 913-928,
https://doi.org/10.1016/j.jmaa.2011.10.035;

[7] Márta Szilvási-Nagy, Teréz P. Vendel, Generating curves

and swept surfaces by blended circles, Computer Aided Geometric
Design, Volume 17, Issue 2, February 2000, Pages 197-206,

https://doi.org/10.1016/S0167-8396(99)00045-X;

[8] Oancea N., Surfaces Generation through Winding, Vol. I,
Galati University Press: Galati, Romania, 2004;

[9] Oancea N., Surfaces Generation through Winding, Vol. II,

Galati University Press: Galati, Romania, 2004;
[10] Oancea N., Surfaces Generation through Winding, Vol. III,

Galati University Press: Galati, Romania, 2004;

[11] V.G. Teodor, V. Păunoiu, N. Baroiu, F. Susac,

Optimization of the measurement path for the car body parts

inspection, Measurement, Vol. 146, pp. 15-23, ISSN 0263-2241,

2019;
[12] V.G. Teodor, N. Baroiu, F. Susac, The synthesis of new

algorithms for CAD profiling of cutting tools, Lambert Academic

Publishing, ISBN 978-613-7-08923-1, 2018

https://doi.org/10.1016/0010-4485(81)90213-X
https://doi.org/10.1016/0010-4485(81)90213-X
https://doi.org/10.1016/0010-4485(90)90049-I
https://doi.org/10.1007/BF01898351
https://doi.org/10.1016/0045-7949(95)00261-8
https://doi.org/10.1016/0045-7949(95)00261-8
https://doi.org/10.1016/j.jmaa.2011.10.035
https://doi.org/10.1016/S0167-8396(99)00045-X

