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Abstract: - They are know and used the various methods for the profiling of the gear hub reciprocally enwrapping with 

a profiles whirl, associated with a rolling centrodes. 

In this paper, is proposed a profiling method of the gear hub primary peripheral surface, reciprocally enwrapping with 

an ordered profiles whirl based on the principles of helical motion decomposing and on the surfaces enwrapping 

theory. The proposed method is applied for surfaces known in discreetly form and approximated by 2
nd

 or 3
rd

 degree 

Bezier polynomials. 

Based on a dedicated software are presented numerical examples and the results are shown versus results obtained by 

classical analytical methods, examples which show the reduced error level of proposed method. 
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1   Introduction 
They are known modalities for gear hub primary 

peripheral surface profiling [1], [4], [5], [6], reciprocally 

enwrapping with an ordered surfaces whirl, associated 

with an axoid in rolling with a rack gear’s axoid, 

common with the helical surface’s rack of the gear hub. 

Principled, the fundamentals theorems [4], [5], [6], of 

the surfaces enwrapping presume to know in analytically 

form the enwrapping surfaces, the contact conditions 

between the conjugated surfaces or analytical expression 

which associated with the generated surfaces family in 

the relative motions between the surfaces to be generated 

and the primary peripheral surfaces of tools, determine 

the form of the tools. 

From some reasons may be important to know in 

discreetly form the surface to be generated [5]. 

These kinds of problem need a specific algorithm. The 

surface description, known in numerical form, by Bezier 

approximation polynomials, may constitute an 

alternative for the gear hub profiling when the generating 

precision is satisfactory. Obviously, this kind of solving 

is designated for the surfaces ordered whirl generation, 

firstly for the non-involute profiles, for which always 

appear the necessity of tool’s profiling, when the tool’s 

profile is not known. 

 

 

2   Reference systems. Generating motion 
In figure 1, is presented the system of rolling axoid: the 

surfaces to be generated whirl axoid; the rack-gear 

reciprocally enwrapping axoid; the gear hub primary 

peripheral surfaces axis position and the global motions 

of the reference systems associated with these axoids. 

 
Fig. 1. The rolling axis and coordinate systems 

 

They are defined the reference systems: 

xyz is the global reference system with z revolving axis 

of the axoid associated with the whirl of surface to be 

generated; 

x0y0z0 — global reference system, with y0 axis 

overlapped to the primary peripheral surface axis of the 

gear hub; 

XYZ — relative reference system joined with the surface 

to be generated whirl, and axoid A1; 

  — relative reference system joined with the rack 

gear axis (in-plane surface overlapped with plane ), 

and axoid A2; 



X1Y1Z1 — relative reference system associated with 

primary peripheral surface of gear hub. 

Is known the kinematics of the generation process: 

  3 1

Tx X  , (1) 

the A1 axoid rotation, joined with the XYZ reference 

system, with  angular parameter; 

 ,  
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, (2) 

the A2 axoid translation, joined with the  reference 

system and the  movement parameter; 

  0 2 2 1

Tx X  , (3) 

the X1Y1Z1 system rotation around the y0 axis, with 2 

angular parameter. 

Also, are known the conditions: 

 1rpR   , (4) 

rolling condition of A1 and A2 axoid; 

 2 cosp      (5) 

dependency of gear hub primary peripheral surface, 

worm with known pitch (p — helical parameter) and the 

transformation between global reference systems: 
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, (6) 

A12 distance between the axis of A1 axoid and helical 

surface’s axis V


. 

In principle, the angular velocities for the revolution 

motions are even motions. 

The relative motion of the reference system joined with 

A1 axis of the surface to be generated, XYZ, regarding the 

reference system associated with the rack gear space, 

, is give by the transformation: 

  3 1

T X a     (7) 

with the current point’s definition on the surface to be 

generated, as a cylindrical surface with generatrix 

parallel with the direction  Z k


: 
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for u discreetly known variable with a reduced values 

number (3 or 4 points), as element of a complex profile 

which will be generate by enwrapping. 

The crossing profile of the cylindrical surface (8) may be 

a straight lined segment, a circle arc, an involute arc etc. 

The t parameter is measured along the cylindrical surface 

generatrix. 

In following will be analyzed the problem of gear hub 

profiling using the expression of the cylindrical surface 

generatrix by a limited number of points. The generation 

kinematics is described by the transformation (7) and 

one of the fundamentals theorem of the enwrapping 

generation. 

 

 

3   Rack gear surface form determination 
From (7) and (8) are determined the surfaces family in 

the reference system of the rack-gear tool  with  

variable parameter: 

 

 
1 1

1 1 1

cos sin 0

sin cos 0

0 0 1 0

rp

rp

X u R

Y u R

t

  

   



        
      

          
      
      

 (9) 

which is associated with the enwrapping condition: 

     0u uX X u X Y Y u Y             (10) 

where,  
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representing the “condition of normals”. 

 
 

Fig. 2. The  surface of the whirl to be generated, known 

by four points on generatrix 

 

In principle, the surfaces family described by equations 

(9) is on form: 
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The identification of the A, B, C, D, A, B, C, D is 

presented in table 1, for a cylindrical surface with a 

circular generatrix regarding the example presented in 

subsection 5.2 and, similarly for another generatrix 

types.  

Along the directrix of this surface type are defined a 

limited point number (3 or 4), which describe a Bezier 

polynomial replacing this curve. 

 



 

Table 1. The rack-gear coefficients identification 

 

   Points on tool’s profile Identification of the polynomials 
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By the identification of the polynomial coefficients is 

defined the discreetly form of the rack-gear reciprocally 

enwrapping with the whirl to be generated. 

 

 

4   Gear Hub Primary Peripheral Surface 

Profiling 
Being know the rack-gear flank surface is proposed the 

determination of the characteristically (the contact curve) 

at the contact with the future primary peripheral surface 

of the gear hub using the method of the helical 

movement decomposition [2]. 

Is accepted that the helical motion of the gear hub 

primary peripheral surface  ,V p


 is decomposing in a 

sum of equivalents motions: translation movement along 

the t


 direction of the unitary vector of the cylindrical 

surface generatrix and a revolution around A


 axis 

parallel with V


 and at distance 

 tana p    (13) 

to the helical surface axis V


, see figure 3. 

In this way, the S surface’s characteristically curve, in 

the composed motion, don’t depend to the motion 

component in which the surface is auto-generated, being 

fulfilled the identity: 

 0SN t 
 

, (14) 

(the normal at the S surface is always perpendicularly on 

the own generatrix), and the condition to determine the 

characteristically curve, in the helical motion ,V p


, will 

depend only to the revolution around A


 axis. 

 

 
 

Fig. 3. Helical movements decomposition method. 

Reference systems 

 

So, the characteristically curve of the S cylindrical 

surface is defined as the projection of the A


 axis on the 

S surface. The projection will be the geometric locus on 



the S surface where the normals at this intersect the A


 

axis. 

They are defined, see figure 3: 

- A


 axis, in the x0y0z0 reference system, 

 cos sinA j k     
 

; (15) 

- the normal at S surface, in form 

 
0 0 0S x y zN N i N j N k  

  
, (16) 

with 
0 0 0
, ,x y zN N N  directrix parameters of the normal at S 

surface, approximated by an Bezier polynomial, 
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- the 1r


 vector, 

 1 1r O O i r  
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 (18) 

where 1r


 is the current point vector on the surface 

represented in the discreetly form, surface S. 

From (12), result the coordinates transformation in the 

reference system x0y0z0, 
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leading at the S in the x0y0z0 reference system: 
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with Rrs pitch radius of the gear hub. 

The  parameter value is determined from condition that 

the helix on the cylinder with Rrs radius to be parallel 

with the rack gear generatrix cylindrical flank, see 

figure 4: 
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with p helical parameter of the primary peripheral 

surface of gear hub. 

In this way, the condition to determine the 

characteristically curve become: 

  1, , 0SA N r 
  

. (22) 

In principle, the (22) equation represent a dependency 

between  and t variable parameters:  , 0q t  , with 

0 1  . 

The (20) and (22) equations assembly represent a 

geometric locus on the S surface with significance of the 

S surface’s characteristically curve. 

The couple of parametrical values  and t for which is 

satisfied the (22) condition by replacing the rack-gear 

flank determine the matrix 
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representing the CS characteristically curve’s 

coordinates. 

 
Fig. 4. Unfold of the helical line 

 

Is made the coordinate transformation from X0Y0Z0 

reference system to a system X1Y1Z1 with Y1 axis 

overlapped with the gear hub tool’s axis, see figure 1: 

  1 1 0

TX X    (24) 

so, in the helical movement 
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of the Cs curve it arrive at form: 
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representing the gear hub’s primary peripheral surface 

equations. 

Associating with  surface the condition 

 1 0Z  , (27) 

is obtained the axial section of the gear hub, in principle, 

in form: 
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with 2 corresponding to the axial section 1 0Z  . 

 

5   Numerical examples 
 

5.1 Shaft with square crossing section 
As first example is proposed a shaft with square crossing 

section, see figure 5. 



 

 
Fig. 5. Shaft’s crossing section and reference systems 

 

 

 

The  surface to be generated has equations: 
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with a side of square, u and t variables. 

The  surface equations in the reference system of the 

rack-gear tools will be: 
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In figure 6, is presented a screenshot of the software 

used to profile the gear hub; also the characteristically 

curve and axial section are presented there.  

In table 2, are presented the gear hub profile coordinates 

calculated for the tool which profile the shaft with 

dimensions: Rrp=30 mm; a= 42.42 mm; Rrs=40 mm; 

pe=47.1 mm (helical pitch), versus the results obtained 

by using an analytical method (Gohman [4]), for the 

same surface. The approximate Bezier polynomial for 

the surface’s generatrix (30), is a 3
rd

 degree polynomial. 

The error level of the gear hub is 22 10  mm regarding 

the theoretically profile.  

 

 
Fig. 6. Software for gear hub profiling; axial section and 

characteristically curve 

 

Table 2. Gear hub profile coordinates 
Approximated 

profile [mm] 
Real profile [mm] 

 

X1 Y1 X1 Y1 

Error 

[mm] 

0,000 48,790 0,000 48,790 0,000 0,000 

48,769 1,303 48,780 1,303 0,012 

           

48,029 7,775 48,035 7,775 0,006 

0,333 47.852 8,618 47,855 8,617 0,003 

47.753 9,050 47,754 9,049 0,001 

           

45,177 16,430 45,172 16,429 0,005 

0,666 44,994 16,805 44,991 16,806 0,003 

44,589 17,596 44,589 17,598 0,002 

           

40,917 22,999 40,925 23,007 0,011 

1,000 40,022 23,967 40,041 23,948 0,026 

 

5.2 Chain wheel 
In following, is presented another example of the 

proposed algorithm for the helical surface reciprocally 

enwrapping with a chain wheel. 

The dimensional elements of the wheel are: pw=15 mm 

(wheel pitch); dividing radius, Rrs=36.0727 mm; z=15 

teeth, A [-35; 0]; B [-36.25; 2.16]; C [-40; 8.66]; R1=2.5 

mm; R2=7.5 mm; Rrs=40 mm; =0.3843 rad; helical 

parameter p=16.1807 mm. 

The wheel’s profile is presented in figure 7, and the gear 

hub coordinates are given in table 3 and 4. 

The error level regarding the tool’s profile determined by 



analytical methods is on level 21 10  [mm]. 

 
Fig. 7. Chain wheel’s profile 

 

 
Fig. 8. Software screenshot; axial section and 

characteristically curve 

 

Table 3. Gear hub profile for AB arc 
Approximated  

profile [mm] 

Theoretically 

profile [mm] 
 

X1 Y1 X1 Y1 

Error 

[mm] 

0,000 41,000 0,001 41,000 0,002 0,001 

           

40,884 0,834 40,885 0,835 0,001 

0,333 40,856 0,924 40,857 0,926 0,001 

40,841 0,971 40,841 0,972 0,001 

          
 

40,427 1,734 40,426 1,734 0,001 

0,666 40,397 1,769 40,397 1,769 0,001 

40,333 1,840 40,334 1,840 0,001 

          
 

39,809 2,198 39,809 2,199 0,001 

1,000 39,703 2,224 39,705 2,222 0,003 

Table 3. Gear hub profile for BC arc 

Approximated  

profile [mm] 

Theoretically 

profile [mm] 
 

X1 Y1 X1 Y1 

Error 

[mm] 

0,000  39,692  2,224  39,692  2,219  0,005  

           

37,700  3,324  37,698  3,329  0,004  

0,333  37,511  3,496  37,511  3,499  0,003  

           
36,034  5,430  36,034  5,427  0,002  

0,666  35,976  5,538  35,975  5,535  0,003  

           
1,000  35,104  7,926  35,105  7,924  0,002  

 

In figure 8, is presented a screenshot of the software 

used for gear hub profiling 

 

4   Conclusion 
The profiling method of the gear hub which generates an 

ordered profiles whirl is based on the principles of the 

helical motion decomposition. 

The method use the Bezier approximation polynomials 

for the rack-gear reciprocally enwrapping with profiles 

whirl and is rigorous enough, for usually profiles, as is 

proved by the presented numerical examples. 

The method has a general character and the method 

precision may be increased by the increasing the 

approximate Bezier polynomials degree, for 

characteristically curves approximation. 

For the polynomials with reduced degree are defined 

pre-calculated forms of the coefficients. 
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