RAPORT ŞTIINȚIFIC ETAPA 2017

SINTEZA UNOR NOI ALGORITMI DE PROIECTARE CAD A PROFILURILOR SCULELOR AȘCHIETOARE, GENERATOARE A SUPRAFEȚELOR COMPLEXE, CU MIJLOACE NEANALITICE

CONTRACT DE CERCETARE PNII-RU-TE-2014-4-0031/2015

Echipa de cercetare:

Director de proiect:	conf. dr. ing. Virgil Gabriel TEODOR
Cercetători postdoctorali:	ş.l. dr. ing. Nicuşor BAROIU
	ş.l. dr. ing. Florin SUSAC
Studenți doctoranzi:	drd. ing. Răzvan Tudor ROŞCULEŢ
-	drd. ing. Mircea NICULESCU

Etapa III

Cuprins

Cuprins	.2
I. Algoritmizarea generării suprafețelor complexe, cu scule de revoluție preformate	.4
1.1. Metodă de profilare a frezei melc pentru generarea unei roți de curea din componența unei transmisii sincrone	4
1.1.1. Profilul de generat. Sisteme de referință. Cremaliera generatoare	.4
1.1.2. Suprafața periferică primară a sculei melc	.7
1.1.3. Concluzii	13
1.2. Generarea melcului din angrenajul compresorului elicoidal cu roți stelate1	13
1.2.1. Soluție tehnologică de generare a melcului	16
1.2.2. Metoda grafică	18
1.2.3. Concluzii	21
1.3. Modelarea, analitică și grafică, a generării unei suprafețe elicoidale necilindrice cu o sculă preformată	21
1.3.1. Modelarea procesului de generare a palei rotorului	22
1.3.2. Aplicație numerică	26
1.3.3. Concluzii	27
1.4. Modelarea generării palelor rotorului de compresor centrifugal prin metode analitice	27
1.4.1. Cinematica generării. Sisteme de referință	28
1.4.2. Transformări de coordonate. Model analitic al familiei de traiectoriilor d generare	.e 30
1.4.3. Suprafața sculei preformate — S	31
1.4.4. Condiția de înfășurare a familiei de traiectorii	32
1.4.5. Curba caracteristică	33
1.4.7. Concluzii	36
II. Modificări constructive ale burghielor elicoidale în scopul îmbunătățirii comportării în timpul așchierii	36
2.1. Energia consumată pe unitatea de lungime a muchiei așchietoare	37
2.2. Modelul analitic al suprafeței de ascuțire hiperboloidale	41
2.3. Caracteristicile muchiilor așchietoare principale	42
2.4. Variația unghiului de așezare	44
2.5. Detalonarea feței de așezare	46
2.6. Rezultate experimentale privind uzura burghielor	48
2.7. Valori experimentale și interpretarea rezultatelor	49
2.6.1. Rezultate experimentale privind rugozitatea suprafețelor prelucrate5	52
2.6.2. Rezultate experimentale privind evaluarea forței axiale și a momentului de torsiune la burghiere	55

2.7. Concluzii	56
2.8. Aspecte referitoare la rugozitatea suprafețelor prelucrate prin burghiere	56
2.8.1. Cercetări experimentale privind comportarea în așchiere a burghielor elicoidale cu 2 tăișuri rectilinii	57
2.8.2. Concluzii	67
Anexa 1	68
Anexa 2	69
Bibliografie	93

I. Algoritmizarea generării suprafețelor complexe, cu scule de revoluție preformate

1.1. Metodă de profilare a frezei melc pentru generarea unei roți de curea din componența unei transmisii sincrone

Problema profilării sculei melc generatoare a unui vârtej ordonat de profiluri constituie o problemă de înfășurare a suprafețelor, cu contact punctiform. Soluționarea unei astfel de probleme se realizează în baza teoremei a II-a Olivier [1], [2] — suprafețe în înfășurare ce depind de doi parametri independenți.

Evident, există și o soluție în baza teoremei Gohman [1], [2] care face apel la metoda suprafeței intermediare – cremalieră generatoare a vârtejului ordonat de profiluri de generat.

Metodica suprafeței intermediare conduce, în fapt, la transformarea problemei de contact punctiform, în două probleme succesive de contact liniar a unor suprafețe în înfășurare: determinarea cremalierei generatoare și, ulterior, pornind de la aceasta determinarea caracteristicii la contactul cremalierei cu suprafața periferică primară, de formă elicoidală — scula melc [1], [3].

S-au propus și aplicat teoreme complementare ale înfășurării suprafețelor: teorema "distanței minime" sau teorema "familiei de cercuri de substituire" [3], care permit și soluționarea problemei profilării sculei melc generatoare a unui vârtej ordonat de suprafețe, [7], Teodor și alții.

Dezvoltarea mediilor grafice de proiectare a permis dezvoltarea unor algoritmi grafici [4], [5], Berbinschi și alții, care au condus la rezolvări intuitive, riguroase și totodată rapide ale acestui tip de probleme.

O soluție originală a fost dezvoltată în baza teoremei complementare a "traiectoriilor plane de generare" [6], Baroiu și alții, aplicată pentru studiul suprafețelor în înfășurare, asociate unui cuplu de centroide în rulare.

În lucrarea de față se propune utilizarea metodei traiectoriilor plane de generare pentru profilarea sculei melc generatoare a unui vârtej ordonat de profiluri — roată de curea pentru transmisii sincrone cu profil circular. Se prezintă un algoritm specific, aplicat pentru acest tip de profil, în formă analitică comparativ cu soluționarea aceleiași probleme în formă grafică, în mediul CATIA.

Fig. 1.1. Roată de curea pentru transmisie sincronă

1.1.1. Profilul de generat. Sisteme de referință. Cremaliera generatoare

În figura 1.2 sunt prezentate profilul roții de curea, sistemele de referință și mișcările relative ale roții de generat și a cremalierei generatoare.

Fig. 1.2. Profilul frontal al roții de curea; sisteme de referință

Se definesc sistemele de referință:

xyz este sistemul de referință fix, axa *z* fiind suprapusă axei de rotație a roții de curea; XYZ — sistem de referință mobil, solidar centroidei de rază R_r ;

 $\xi\eta\zeta$ — sistem de referință mobil solidar cremalierei generatoare, axa η fiind suprapusă centroidei asociate cremalierei.

Cinematica generării include mișcarea de rotație a centroidei roții, de unghi φ și mișcarea de translație a cremalierei de parametru λ , în lungul axei η .

Este definită condiția de rulare a celor două centroide, C_1 și C_2 ,

$$\lambda = R_r \cdot \varphi \,. \tag{1.1}$$

Se definesc în sistemul *XYZ* ecuațiile profilului de generat (profilul frontal al roții de curea):

$$C_{\Sigma} \begin{vmatrix} X = -R_r + r \cdot \cos \theta; \\ Y = r \cdot \sin \theta; \\ Z = t, \end{cases}$$
(1.2)

cu *r* raza profilului circular și θ și *t* parametri variabili. Inițial, t = 0.

Mișcările absolute (în raport cu sistemul fix) sunt definite de transformările:

$$x = \omega_3^T(\varphi) \cdot X;$$

$$x = \xi + a; \ a = \begin{pmatrix} -R_r \\ -R_r \cdot \varphi \\ 0 \end{pmatrix},$$
(1.3)

care conduc la miscarea relativă:

$$\xi = \omega_3^T \left(\varphi \right) \cdot X - a \,. \tag{1.4}$$

Se determină acum familia de suprafețe C_{Σ} în mișcarea relativă față de sistemul de referință al cremalierei

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -R_0 + r \cdot \cos\theta \\ -R_r \cdot \varphi \\ t \end{pmatrix} - \begin{pmatrix} -R_r \\ -R_r \cdot \varphi \\ 0 \end{pmatrix}.$$
(1.5)

După dezvoltări rezultă formele analitice ale familiei de suprafețe $(C_{\Sigma})_{o}$,

$$(C_{\Sigma})_{\varphi} \begin{vmatrix} \xi = (-R_r + r\cos\theta)\cos\varphi - r\sin\theta\sin\varphi + R_r; \\ \eta = (-R_r + r\cos\theta)\sin\varphi + r\sin\theta\cos\varphi + R_r\varphi; \\ \zeta = t, \end{cases}$$
(1.6)

t scalar variabil.

Înfășurătoarea acestei familii de suprafețe constituie cremaliera generatoare.

Se determină forma cremalierei (înfășurătoarea familiei (1.6)) în baza teoremei familiei de traiectorii plane de generare.

Acesta impune cunoașterea normalei în punctul curent M (vezi figura 2) al suprafeței C_{Σ}

$$\vec{N}_{C_{\Sigma}} = \left(X_{C_{\Sigma}} - \kappa \cos\theta\right)\vec{i} + \left(Y_{C_{\Sigma}} - \kappa \sin\theta\right)\vec{j} + t\vec{k}.$$
(1.7)

 $X_{C_{\Sigma}}$ și $Y_{C_{\Sigma}}$ sunt definite de ecuațiile (1.2) iar κ este un scalar variabil în lungul normalei.

Se definește, acum, familia de traiectorii relative a normalei (1.7), în raport cu sistemul $\xi\eta\zeta$, vezi și (1.5):

$$\xi = \left[-R_r - (r - \kappa) \cos \theta \right] \cos \varphi - (r - \kappa) \sin \theta \sin \varphi + R_r; \eta = \left[-R_r + (r - \kappa) \cos \theta \right] \sin \varphi + (r - \kappa) \sin \theta \cos \varphi + R_r \varphi;$$
 (1.8)

$$\zeta = t.$$

Se impune condiția ca familia de traiectorii a normalelor $(N_{C_{\Sigma}})_{\varphi}$ să treacă prin polul angrenării:

$$P \begin{vmatrix} \xi = 0; \\ \eta = R_r \varphi; \\ \zeta = t, \end{cases}$$
(1.9)

ceea ce conduce la ecuațiile:

$$\begin{bmatrix} -R_r + (r - \kappa) \end{bmatrix} \cos \varphi - (r - \kappa) \sin \theta \sin \varphi + R_r = 0; \begin{bmatrix} -R_r + (r - \kappa) \end{bmatrix} \sin \varphi + (r - \kappa) \sin \theta \cos \varphi + R_r \varphi = R_r \varphi.$$
(1.10)

Din fiecare dintre ecuațiile (1.10) se determină parametrul κ :

$$\kappa = \frac{-R_r \cos \varphi + r \cos \left(\theta + \varphi\right) + R_r}{\cos \left(\theta + \varphi\right)},\tag{1.11}$$

$$\kappa = \frac{-R_r \sin \varphi + r \sin(\theta + \varphi)}{\sin(\theta + \varphi)}.$$
(1.12)

Din egalarea ecuațiilor (1.11) și (1.12) se determină condiția:

$$\varphi = \arcsin\left[\frac{R_r}{R_r}\sin\theta\right] - \theta, \qquad (1.13)$$

deci

$$\varphi = 0. \tag{1.14}$$

Condiția (1.14) reprezintă condiția de înfășurare care, asociată familiei $(C_{\Sigma})_{\varphi}$, determină forma cremalierei generatoare.

$$I \begin{cases} \xi = (-R_r + r\cos\theta)\cos\varphi - r\sin\theta\sin\varphi + R_r; \\ \eta = (-R_r + r\cos\theta)\sin\varphi + r\sin\theta\cos\varphi + R_r\varphi; \\ \zeta = t; \\ \varphi = 0. \end{cases}$$
(1.15)

Astfel, suprafața cremalierei generatoare *I* se reduce la:

$$I\begin{cases} \xi = r\cos\theta;\\ \eta = r\sin\theta;\\ \zeta = t, \end{cases}$$
(1.16)

vezi și figura 1.3.

Fig. 1.3. Forma sculei cremalieră în spațiul $\xi\eta\zeta$

1.1.2. Suprafața periferică primară a sculei melc

În figura 1.4, sunt prezentate sistemele de referință asociate cremalierei și viitoarei suprafețe periferice primare a sculei melc.

Fig. 1.4. Sistemele de referință

Sisteme de referință:

xyz este sistemul de referință fix, asociat roții de curea;

 $x_0y_0z_0$ – sistem de referință fix, ajutător, solidar cu axa viitoarei scule melc, \vec{V} ; $\xi\eta\zeta$ – sistem mobil, solidar cremalierei generatoare cu axa η suprapusă dreptei de

rulare;

XYZ – sistem mobil, solidar roții de curea;

 $X_I Y_I Z_I$ – sistem mobil, solidar cu melcul reprezentând suprafața periferică primară a viitoarei scule melc, cu axa \vec{V} suprapusă axei Y_I .

 $\xi_1 \eta_1 \zeta_1$ – sistem mobil, solidar axei \vec{A} paralelă cu axa \vec{V} .

Cinematica procesului de generare

Se consideră că mișcarea elicoidală de axă \vec{V} și parametru elicoidal *p* se descompune într-un ansamblu de mișcări: translație în lungul generatoarelor \vec{T} ale suprafeței cilindrice a cremalierei, vezi figura 4, și o mișcare de rotație de axa \vec{A} paralelă cu \vec{V} și aflată la distanța a_0 de aceasta.

$$\left(\vec{V}, p\right) \sim \left(\vec{T}, v\right) + \left(\vec{A}, \omega_A\right),$$
 (1.17)

în care v este parametrul mișcării de translație. iar ω_A este viteza unghiulară de rotație în jurul axei \vec{A} ,

$$\varphi_I = 2\pi\omega_A. \tag{1.18}$$

Mărimea $a_0 = p \cdot tan\left(\frac{\pi}{2} - \omega\right)$, ω fiind unghiul de înclinare al axei \vec{V} față de planul

axei ξ , vezi figura 1.4.

Translația cremalierei generatoare este descrisă de transformarea:

$$x = \xi + a, \ a = \begin{pmatrix} -R_r \\ -\lambda \\ 0 \end{pmatrix}.$$
(1.19)

Poziția sistemelor de referință fixe, *xyz* și *x*₀*y*₀*z*₀:

$$x_0 = \beta \left[x - \begin{pmatrix} -R_r - R_{rs} \\ 0 \\ 0 \end{pmatrix} \right], \tag{1.20}$$

$$\beta = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & -\sin \omega \\ 0 & \sin \omega & \cos \omega \end{pmatrix}, \tag{1.21}$$

$$\lambda = p_m \cdot \varphi_2 \cdot \cos \omega, \tag{1.22}$$

 p_m este parametrul elicoidal al suprafeței periferice primare a sculei melc.

Astfel, mișcarea relativă a sistemului $\xi\eta\zeta$, solidar cremalierei, față de $X_IY_IZ_I$, solidar sculei melc este

$$X_{I} = \omega_{2}(\varphi_{2})\beta \left[\xi + \begin{pmatrix} -R_{r} \\ -\lambda \\ 0 \end{pmatrix} - a_{0}\right].$$
 (1.23)

Notă: Facem observația că în mișcarea compusă (1.17) în componenta de translație în lungul axei \vec{T} generatoarea suprafeței cilindrice se autogenererază. Ca urmare, caracteristica suprafeței (1.16) în ansamblul de mișcări (1.17) va depinde numai de mișcarea de rotație în jurul axei \vec{A} , vezi figura 4.

Astfel, în mișcarea relativă, vezi (1.23), suprafața cremalierei (1.16) descrie familia:

$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} \cos\varphi_2 & 0 & -\sin\varphi_2 \\ 0 & 1 & 0 \\ \sin\varphi_2 & 0 & \cos\varphi_2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{pmatrix} \cdot \begin{bmatrix} r\cos\theta \\ r\sin\theta \\ t \end{pmatrix} + \begin{pmatrix} a_0 \\ p_m\varphi_2\cos\varphi \\ 0 \end{pmatrix} \end{bmatrix}, (1.24)$$

care, dezvoltată, conduce la familia de suprafețe generată de cremaliera (1.16) în spațiul $X_I Y_I Z_I$,

$$\begin{pmatrix} I \end{pmatrix}_{\varphi_2} \begin{cases} X_1 = (r\cos\theta + a_0)\cos\varphi_2 - (r\sin\theta + p_m\varphi_2\cos\omega)\sin\omega\sin\varphi_2 - t\cos\omega\sin\varphi_2; \\ Y_1 = (r\sin\theta + p_m\varphi_2\cos\omega)\cos\omega - t\sin\omega; \\ Z_1 = (r\cos\theta + a_0)\sin\varphi_2 + (r\sin\theta + p_m\varphi_2\cos\omega)\cos\varphi_2\sin\omega + t\cos\omega\cos\varphi_2. \end{cases}$$
(1.25)

Înfășurătoarea familiei de suprafețe $(I)_{\varphi_2}$ (1.25) reprezintă suprafața elicoidală — suprafața periferică primară a sculei melc.

Condiția de înfășurare specifică

Conform cu metoda familiei de traiectorii de generare se determină normala la suprafața I (1.16). Parametrii directori ai normalei la suprafața I sunt

$$\vec{n}_I = -\cos\theta \cdot \vec{i} - \sin\theta \cdot \vec{j} + t \cdot \vec{k} , \qquad (1.26)$$

astfel că vectorul normalei la I în punctul curent al suprafeței cremalierei este de forma:

$$\vec{N}_{I} = (r - \kappa) \cos \theta \cdot \vec{i} + (r - \kappa) \sin \theta \cdot \vec{j} + t \cdot \vec{k} , \qquad (1.27)$$

cu κ parametru scalar variabil.

Transferând normala (1.27) în spațiul $\xi_I \eta_I \zeta_I$, vezi figura 4, se obține

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \omega & -\sin \omega \\ 0 & \sin \omega & \cos \omega \end{pmatrix} \cdot \begin{pmatrix} (r+\kappa)\cos \theta \\ (r+\kappa)\sin \theta \\ t \end{pmatrix}$$
(1.28)

astfel că se obțin formele:

$$\vec{N}_{I_{\zeta_{I}\eta_{I}\zeta_{I}}} = (r+\kappa)\cos\theta \cdot \vec{i} + [(r+\kappa)\sin\theta\cos\omega - t\sin\omega] \cdot \vec{j} + [(r+\kappa)\sin\theta\sin\omega + t\cos\omega] \cdot \vec{k}.$$
(1.29)

Se determină traiectoria normalei (1.29) în mișcarea de rotație în jurul axei \vec{A} :

$$\begin{pmatrix} \xi_1 \\ \eta_1 \\ \zeta_1 \end{pmatrix} = \begin{pmatrix} \cos\varphi_1 & 0 & -\sin\varphi_1 \\ 0 & 1 & 0 \\ \sin\varphi_1 & 0 & \cos\varphi_1 \end{pmatrix} \cdot \begin{pmatrix} (r+\kappa)\cos\theta \\ (r+\kappa)\sin\theta\cos\omega - t\sin\omega \\ (r+\kappa)\sin\theta\sin\omega + t\cos\omega \end{pmatrix}.$$
(1.30)

Rezultă familia normalelor $\vec{N}_{I_{\xi_l\eta_l\zeta_l}}$ după rotația în jurul axei A:

$$\begin{pmatrix} \vec{N}_I \end{pmatrix}_{\varphi_I} \begin{vmatrix} \xi_I = (r+\kappa)\cos\theta\cos\varphi_I - (r+\kappa)\sin\theta\sin\omega\sin\varphi_I - t\cos\omega\sin\varphi_I; \\ \eta_I = (r+\kappa)\sin\theta\cos\omega - t\sin\omega; \\ \zeta_I = (r+\kappa)\cos\theta\sin\varphi_I + (r+\kappa)\sin\theta\sin\omega\cos\varphi_I + t\cos\omega\cos\varphi_I. \end{cases}$$
(1.31)

Din condiția ca familia normalelor $\left(\vec{N}_{I}\right)_{\varphi_{I}}$ să intersecteze axa \vec{A} :

$$\vec{A} \begin{vmatrix} \xi_I = 0; \\ \zeta_I = 0, \end{vmatrix}$$
 (1.32)

se determină condițiile:

$$(r+\kappa)\cos\theta\cos\varphi_{l} - (r+\kappa)\sin\theta\sin\omega\sin\varphi_{l} - t\cos\omega\sin\varphi_{l} = 0; (r+\kappa)\cos\theta\sin\varphi_{l} + (r+\kappa)\sin\theta\sin\omega\cos\varphi_{l} + t\cos\omega\cos\varphi_{l} = 0.$$
(1.33)

Prin eliminarea parametrului scalar κ se ajunge în final la forma

$$t\cos\omega\cos\theta = 0\,,\tag{1.34}$$

echivalentă cu t = 0.

Ansamblul de ecuații (1.25) și (1.34) reprezintă suprafața elicoidală, periferică primară a viitoarei scule melc — suprafața S:

$$X_{I} = (r \cos \theta + a_{0}) \cos \varphi_{2} - (r \sin \theta + p_{w} \varphi_{2} \cos \omega) \sin \omega \sin \varphi_{2};$$

$$S_{I} = (r \sin \theta + p_{w} \varphi_{2} \cos \omega) \cos \omega;$$

$$Z_{I} = (r \cos \theta + a_{0}) \sin \varphi_{2} + (r \sin \theta + p_{w} \varphi_{2} \cos \omega) \sin \omega \cos \varphi_{2}.$$
(1.35)

Profilul suprafeței *S*, pentru $\varphi_2 = 0$, este:

$$X_{I} = r \cos \theta + a_{0};$$

$$Y_{I} = r \sin \theta \cos \omega;$$

$$Z_{I} = r \sin \theta \sin \omega,$$

(1.36)

cu $a_0 = p \cdot tan\left(\frac{\pi}{2} - \omega\right).$

Mărimea a_0 reprezintă raza cilindrului suprafeței elicoidale pe care are loc rularea cu dreapta de rulare a cremalierei generatoare.

Aplicație numerică

Se propune o aplicație numerică pentru cazul unei roți de curea sincronă având dimensiunile:

- pasul circular, $\frac{2\pi R_r}{z_{teeth}} =$;

- raza de rulare
$$R_r = R_e = mm$$
;

- parametrul elicoidal al sculei melc, $p_W = \frac{p_r}{\cos \omega} =; p_W$ — pasul axial al sculei melc; p_r — pasul cremalierei generatoare.

$$p_r = \frac{2\pi R_r}{z_{teeth}} \,. \tag{1.37}$$

Unghiul de înclinare de pantă a elicei melcului, ω :

$$\tan \omega = \frac{p_W}{2\pi R_{rt}},\tag{1.38}$$

cu R_{rt} — raza cilindrului de rulare a suprafeței elicoidale a sculei melc.

$$\omega = \arcsin\left(\frac{p_r}{2\pi R_{rt}}\right). \tag{1.39}$$

- parametrul elicoidal al suprafeței elicoidale a sculei melc:

$$p_w = \frac{p_W}{2\pi}.\tag{1.40}$$

Raza de rulare a sculei melc se alege din considerente tehnologice.

$$a_0 = \frac{p_W}{2\pi} \cdot \frac{l}{\tan \omega} \,. \tag{1.41}$$

Din (1.38) și (1.41) rezultă evidența $a_0 = R_{rs}$.

Metoda grafică

Metoda grafică presupune determinarea profilului intermediar al cremalierei generatoare [9].

Ulterior, în modulul *DMU Kinematics* al mediului de proiectare CATIA, se generează un mecanism tip angrenaj, compus din cremalieră și scula melc și poziționat conform cinematicii de generare, vezi figura 1.4. Scula melc este considerată ca element fix al acestui mecanism, iar profilul cremalierei este rotit în jurul axei \vec{A} .

În fișierul "part" al componentei *cremalieră* se trasează o linie perpendiculară pe profilul cremalierei și care trece printr-un punct arbitrar al acestui profil.

În timp ce cremaliera este rotită în jurul axei \vec{A} , se monitorizează distanța între normala linia respectivă și axa sculei melc. Când această distanță devine 0 este îndeplinită condiția ca normala la profil să treacă prin axa sculei melc și, prin urmare, punctul prin care a fost dusă normala aparține curbei caracteristice.

Punctul este reținut în fișierul "part" al frezei melc și poziția sa este fixată (comanda "*Isolate*") astfel încât să nu se schimbe atunci când se modifică poziția mecanismului.

Normala la profilul cremalierei este trasată prin alt punct și algoritmul se reia.

Astfel, se determină poziția unui număr oarecare de pe curba caracteristică și forma acestei curbe poate fi determinată trasând o curbă *spline* prin toate aceste puncte.

Forma curbei caracteristice și coordonatele punctelor aparținând acesteia, precum și secțiunea axială a frezei melc sunt prezentate în figura 1.5 și tabelul 1.1.

Fig. 1.5. Freza melc pentru generarea unei roti de curea

Tabelul 1.1. *Coordonate ale punctelor de pe curba caracteristică și de pe secțiunea axială*

Curba caracteristică		Secțiunea axială			
X ₁	Y ₁	Z_1	X ₁	Y ₁	Z_1
35.219	-13.494	-0.893	35.230	-13.622	0.000
38.393	-12.114	-0.493	38.479	-12.127	0.000
41.149	-9.839	-0.329	41.210	-9.814	0.000
43.246	-6.922	-0.205	43.275	-6.892	0.000
44.555	-3.572	-0.100	44.563	-3.552	0.000
45.000	0.000	0.000	45.000	0.000	0.000
44.555	3.572	0.100	44.563	3.553	0.000
43.246	6.922	0.205	43.275	6.892	0.000
41.149	9.839	0.329	41.210	9.814	0.000
38.393	12.114	0.493	38.479	12.127	0.000
35.219	13.494	0.893	35.230	13.622	0.000

1.1.3. Concluzii

Metoda utilizează un algoritm bazat pe teorema complementară a înfășurării suprafețelor — metoda traiectoriilor relative de generare — în scopul profilării frezei melc destinată generării danturii unei roți de curea din componența unei transmisii sincrone.

Algoritmul de profilare a fost dezvoltat în mediul de proiectare CATIA, pentru un exemplu real.

Algoritmul pornește de la determinarea ecuațiilor analitice ale profilului ce trebuie generat. Pentru profilul respectiv se determină familia de traiectorii descrise în mișcarea relativă dintre sculă și semifabricat.

Ulterior, se determină familia de normale la aceste traiectorii și, dintre normalele aparținând familiei, se selectează cea care trece prin polul angrenării. Punctul de pe traiectorie prin care trece normala respectivă aparține curbei caracteristice, deci va aparține totodată și suprafeței sculei.

În acest mod se determină profilul unei suprafețe intermediare. Suprafața intermediară este o suprafață auxiliară, care reprezintă suprafața periferică primară a unei cremaliere destinată generării profilului dorit.

Prin urmare, cunoscând forma cremalierei generatoare, se poate determina profilul sculei melc. Pentru acest lucru, se aplică profilului cremalierei o mișcare elicoidală.

Secțiunea axială a sculei melc reprezintă baza pentru generarea acestui tip de sculă

1.2. Generarea melcului din angrenajul compresorului elicoidal cu roți stelate

Compresorul elicoidal mono-șurub, cu elemente de etanșare de tip roți-stelate, au ca organ de lucru principal un melc riglat, cu șase începuturi, care angrenează cu două roți-stelate având dinți cu flancuri rectilinii, figura 2.1 [18].

Construcția specifică a melcului impune aplicarea unor metode tehnologice speciale de prelucrare.

Jensen [10], propune o soluție de generare bazată pe utilizarea unei scule cilindrice preformate, care generează, prin frezare, flancurile canalelor de pe melc.

Problematica generării acestui tip de melc este dificilă, astfel încât Litvin [12] analizează generarea canalelor melcilor conici sau cilindrici prin rectificare. În același timp, Litvin și alții [14] dezvoltă o nouă versiune a angrenajelor elicoidale Novicov-Wildhaber.

Wu și Feng [18] propun o îmbunătățire a roții-stelate pentru reducerea uzurii muchiilor active ale dinților.

Problematica profilării prin metode grafice a fost prezentată de Csibi și alții [15] precum și de Albu [16].

Soluții specifice de profilare a sculelor generatoare pentru prelucrarea suprafețelor elicoidale cu pas constant au fost prezentate de Teodor și alții [17] și de Berbinschi [18], utilizând metode analitice și grafice.

Geometria și cinematica melcului globoidal – elementul constructiv definitoriu a acestui tip de compresor elicoidal sunt prezentate în figura 2.1.

Fig. 2.1. Cinematica generării melcului globoidal

Se definesc sistemele de referință:

xyz și $x_0y_0z_0$ sunt sisteme de referință fixe asociate axelor roții stelate și respectiv, axei melcului;

XYZ – sistem mobil solidar muchiilor generatoare ale roții stelate;

 $\zeta \eta \zeta$ – sistem mobil solidar suprafeței elicoidale a melcului.

Se notează cu φ_1 , respectiv φ_2 , parametrii unghiulari în mișcările de rotație în jurul axelor $V_1(Z)$ și $V_2(\eta)$, figura 1.

Construcția curentă presupune o roată stelată cu 11 dinți și un melc cu 6 începuturi. Astfel, raportul de transmitere este:

$$\varphi_1 = \frac{6}{11} \varphi_2. \tag{2.1}$$

Cinematica generării melcului (identică cu cinematica compresorului) este descrisă de mișcările absolute:

- rotația melcului

$$x_0 = \omega_3^T \left(\varphi_2 \right) \xi; \tag{2.2}$$

- rotația roții stelate

$$x = \omega_3^T \left(\varphi_1 \right) X; \tag{2.3}$$

- poziția sistemelor de referință fixe

$$x_{0} = x - a; a = \begin{vmatrix} -(R_{r} + r) \\ 0 \\ 0 \end{vmatrix}.$$
 (2.4)

Astfel, mișcarea relativă față de sistemul $\xi \eta \zeta$, solidar melcului compresorului este de forma

$$\xi = \omega_2 \left(\varphi_2 \right) \left[\omega_3^T \left(\varphi_1 \right) X - a \right].$$
(2.5)

Profilul compus al roții stelate este dat de ecuațiile:

- flancul AB

$$X = -u;$$

$$Y = -b;$$

$$Z = 0,$$

(2.6)

cu *u* – variabilă; - flancul CD

$$X = -u_1;$$

 $Y = b;$ (2.7)
 $Z = 0,$

cu u_1 – variabilă.

Pentru ambele ecuații, 2b este lățimea dintelui roții stelate.

Fig. 2.2. *Cinematica de generare a melcului globoidal; sisteme de referință* Din (2.5), (2.6) și (2.7), se deduc ecuațiile flancurilor roții melcate:

$$\Sigma_{AB} \begin{vmatrix} \xi = \left[-u \cos \varphi_1 + b \sin \varphi_1 + (R+r) \right] \cos \varphi_2; \\ \eta = -b; \\ \zeta = \left[-u \cos \varphi_1 + b \sin \varphi_1 + (R+r) \right] \sin \varphi_2 \end{aligned}$$
(2.8)

și, similar

$$\Sigma_{CD} \begin{vmatrix} \xi = \left[-u_1 \cos \varphi_1 - b \sin \varphi_1 + (R+r) \right] \cos \varphi_2; \\ \eta = b; \\ \zeta = \left[-u_1 \cos \varphi_1 - b \sin \varphi_1 + (R+r) \right] \sin \varphi_2. \end{aligned}$$
(2.9)

Variabilele u și u_1 variază între limitele, vezi figura 1, $u = u_{min}...u_{max}$, valori constructive și, similar pentru u_1 .

Formele (2.8) și (2.9) reprezintă flancurile golului melcului globoid pentru limite definite ale parametrului φ_I .

$$x^2 + y^2 = R^2 \tag{2.10}$$

$$\varphi_1 = \arccos\left[\frac{R-h}{R}\right],\tag{2.11}$$

în care h este înălțimea flancului melcului (constructiv).

Fig. 2.3. *Limitele de variație ale parametrului* φ_1

1.2.1. Soluție tehnologică de generare a melcului

Se propune o construcție modificată a roții stelate. Diferența constă în forma cilindrică a dintelui de etanșare. Raza cilindrului dintelui a fost notată cu b, iar înălțimea acestuia a fost aleasă egală cu lungimea dintelui iniția, vezi figura 2.4.

Fig. 2.4. Construcția roții stelate

Raportul de transmitere este determinat de relația (2.1). Corpul de revoluție care înlocuiește dintele plan al roții stelate poate fi materializat de o sculă cilindro-frontală. Cu această sculă se poate genera canalul melcului central al compresorului. Repoziționând scula în șase poziții diferite, în conformitate cu pasul unghiular δ , se generează cele șase începuturi ale melcului central.

Forma canalului este studiată în ansamblul de mișcări relative (2.5) și (2.1).

Se consideră ecuațiile parametrice ale suprafeței cilindrice S:

$$\begin{array}{l}
X = -u; \\
Y = b\cos\theta; \\
Z = b\sin\theta,
\end{array}$$
(2.12)

cu raza cilindrului b și u și θ parametri variabili.

Din (2.5) și (2.12) rezultă familia de suprafețe *S*, în sistemul de referință $\xi \eta \zeta$, ca familie a suprafețelor generate de dintele roții stelate în mișcarea relativă față de melcul central al compresorului:

$$(S)_{\varphi_1} \begin{vmatrix} \xi = \left[-u\cos\varphi_1 - b\cos\theta\sin\varphi_1 + \left(R_r + r\right) \right] \cos\varphi_2 - b\sin\theta\sin\varphi_2; \\ \eta = \left[-u\sin\varphi_1 + b\cos\theta\cos\varphi_1 \right]; \\ \zeta = \left[-u\cos\varphi_1 - b\cos\theta\sin\varphi_1 + \left(R_r + r\right) \right] \sin\varphi_2 + b\sin\theta\cos\varphi_2. \end{aligned}$$
(2.13)

Înfășurătoarea familiei (2.13) reprezintă suprafața canalului elicoidal al melcului. Condiția specifică de înfășurare este:

$$\begin{aligned} \xi'_{u} & \eta'_{u} & \zeta'_{u} \\ \xi'_{\theta} & \eta'_{\theta} & \zeta'_{\theta} \\ \xi'_{\varphi_{1}} & \eta'_{\varphi_{1}} & \zeta'_{\varphi_{1}} \end{aligned} = 0,$$

$$(2.14)$$

unde $\xi'_{u}, \xi'_{\theta}, ..., \zeta'_{\varphi_{1}}$ sunt derivatele parțiale ale familiei (2.13):

$$\begin{aligned} \xi'_{u} &= -\cos\varphi_{1}\cos\varphi_{2}; \\ \eta'_{u} &= -\sin\varphi_{1}; \\ \zeta'_{u} &= -\cos\varphi_{1}\sin\varphi_{2}, \end{aligned}$$

$$(2.15)$$

$$\begin{aligned} \xi'_{\theta} &= b\sin\theta\sin\varphi_{1}\cos\varphi_{2} \\ \eta'_{\theta} &= -b\sin\theta\sin\varphi_{1}; \\ \zeta'_{\theta} &= b\sin\theta\sin\varphi_{1}\sin\varphi_{2} + b\cos\theta\cos\varphi_{2}, \end{aligned}$$
(2.16)

$$\begin{aligned} \xi'_{\varphi_{1}} &= \left[u \sin \varphi_{1} - b \cos \theta \cos \varphi_{1} \right] \cos \varphi_{2} - b \cdot i \cdot \sin \theta \cos \varphi_{2} - \\ &- \left[-u \cos \varphi_{1} - b \cos \theta \sin \varphi_{1} + \left(R_{r} + r \right) \right] \cdot i \cdot \sin \varphi_{2}; \\ \eta'_{\varphi_{1}} &= -u \cos \varphi_{1} - b \cos \theta \sin \varphi; \\ \zeta'_{\varphi_{1}} &= \left[u \sin \varphi_{1} - b \cos \theta \cos \varphi_{1} \right] \sin \varphi_{2} - b \cdot i \cdot \sin \theta \sin \varphi_{2} + \\ &+ \left[-u \cos \varphi_{1} - b \cos \theta \sin \varphi_{1} + \left(R_{r} + r \right) \right] \cdot i \cdot \cos \varphi_{2}, \end{aligned}$$

$$(2.17)$$

Prin manipularea ecuațiilor derivatelor parțiale, acestea pot fi aduse la forma:

$$\xi'_{u} = \frac{\cos \varphi_{2}}{\tan \varphi_{1}}; \ \eta'_{u} = 1; \ \zeta'_{u} = \frac{\sin \varphi_{2}}{\tan \varphi_{1}}, \tag{2.18}$$

$$\xi'_{\theta} = \tan \varphi_1 \cos \varphi_2 - \frac{\sin \varphi_2}{\cos \varphi_1 \cdot \tan \theta}; \ \eta'_{\theta} = -1; \ \zeta'_{\theta} = \tan \varphi_1 \sin \varphi_2 + \frac{\cos \varphi_2}{\cos \varphi_1 \cdot \tan \theta}.$$
(2.19)

Astfel, condiția de înfășurare (2.14) poate fi adusă la forma:

$$\frac{\cos \varphi_2}{\tan \varphi_1} \begin{bmatrix} \tan \varphi_1 \cos \varphi_2 - \frac{\sin \varphi_2}{\cos \varphi_1 \tan \theta} \end{bmatrix} \xi'_{\varphi_1} \\ 1 & -1 & \eta'_{\varphi_1} \\ \frac{\sin \varphi_2}{\tan \varphi_1} \begin{bmatrix} \tan \varphi_1 \sin \varphi_2 + \frac{\cos \varphi_2}{\cos \varphi_1 \tan \theta} \end{bmatrix} \zeta'_{\varphi_1} \end{bmatrix} = 0.$$
(2.20)

Prin dezvoltări și înlocuiri, ecuația (2.20) devine:

$$\tan \theta = \frac{u}{i \cdot \left[\left(R_r + r \right) - u \cos \varphi_1 \right]}.$$
(2.21)

Ansamblul ecuațiilor (2.13) și (2.21) reprezintă suprafața generată de dintele cilindric al roții stelate în spațiul melcului, deci forma canalului elicoidal.

Ansamblul ecuațiilor (2.12) și (2.21) reprezintă curba caracteristică pe suprafața cilindrică.

Din relația (2.21), pentru diverse valori ale parametrului φ_1 se obține o familie de curbe caracteristice.

Generatoarea cilindrului extern al melcului, de rază r_e , în sistemul de referință $\xi \eta \zeta$, are ecuațiile:

$$\xi = r_e; \ \eta = \kappa; \ \zeta = 0, \tag{2.22}$$

cu κ parametru scalar variabil. Limita pentru parametrul κ este corelată cu lungimea activă a melcului.

1.2.2. Metoda grafică

Modelarea funcționării angrenajului melc-roată-stelată a fost realizată în modului DMU Kinematics al mediului de proiectare grafică.

În acest scop, a fost generate trei fișiere de tip *Part*. Primul este denumit *Base* (bază) și conține originile sistemelor de referință asociate cu melcul și respectiv cu roata-stelată precum și axele acestor sisteme de referință.

Al doilea fișier de tip *Part* conține elementele geometrice ale melcului (*Worm* — melc), iar al treilea fișier conține elementele geometrice ale roții-stelate (*Wheel* — roată).

În modului *DMU Kinematics*, cele trei fișiere au fost asamblate conform poziției de funcționare. După aceasta a fost definit un mecanism tip angrenaj între elementele *Worm* și *Wheel*. Ambele articulații ale acestor elemente sunt de tip *Revolute joint* (articulație de revoluție).

Prima articulație este definită între elementele *Wheel* și *Base*, cu o restricție de tip *Coincidence* (coincidență) între axa roții și axa corespunzătoare a bazei precum și o restricție de tip *Offset* (deplasare) între planul *xy* al roții și planul *xy* al bazei. Valoarea deplasării a fost stabilită la zero.

A doua articulație a fost definită între elementele *Worm* și *Base*, cu o restricție de tip *Coincidence* între axa melcului și axa corespunzătoare a bazei. O altă restricție este de tip *Offset*, similară cu cea prezentată anterior.

Raportul de transmitere al mecanismului este dat de (2.1).

Elementul fix al mecanismului este elementul *Worm*. Funcționarea mecanismului este simulată utilizând comanda *Simulation* și, după asta, simularea este compilată utilizând *Compile Simulation* și, ulterior, se generează reluarea simulării cu ajutorul comenzii *Replay*.

Acum este posibilă trasarea traiectoriei oricărui element al reperului *Wheel*, în mișcarea sa relativă față de sistemul de referință asociat melcului.

Este trasată traiectoria segmentului de dreaptă care materializează axa unuia dintre dinții roții-stelate. De asemenea, se trasează traiectoria punctului de intersecție între cercul de vârf al dintelui roții-stelate și axa X a sistemului de referință. Traiectoriile respective sunt salvate într-un fișier de tip *Part*, numit *Trace* (urmă), vezi figura 2.5.

Fig. 2.5. Traiectoriile punctului și ale segmentului de dreaptă

În fișierul *Trace* se poate obține o suprafață, utilizând opțiunea *Multi-sections* (secțiuni multiple). Secțiunile suprafeței vor fi reprezentate de pozițiile succesive ale axei dintelui. Drept curbă directoare se va utiliza curba *spline* reprezentată de traiectoria punctului considerat, vezi figura 2.5.

Utilizând comanda Offset se obțin alte două suprafețe care permit determinarea secțiunii canalului în care lucrează dintele roții stelate. Distanță de deplasare este egală cu raza frezei cilindro-frontale cu care se prelucrează canalul melcului (valoarea *b* din figura 2.4).

În același fișier de tip *Part* se mai generează o a treia suprafață. Aceasta este o suprafață de revoluție și materializează suprafața periferică primară a frezei cilindro-frontale. În același timp, suprafața respectivă este suprafața pe care se face etanșarea între dintele roții-stelate și melc. Poziția relativă între această suprafață și suprafața canalului în care lucrează dintele este controlată de doi parametri unghiulari. Fiecare dintre acești parametri stabilesc poziția unuia dintre repere (melc și respectiv roată-stelată) în raport cu propria axă de rotație. Cei doi parametru sunt interdependenți

prin relația dată de raportul de transmisie, $\varphi_1 = \frac{6}{11}\varphi_2$.

Fig. 2.7. Rotația celor două suprafețe

Modificând valoarea parametrului φ_I astfel încât să parcurgă toată zona de etanșare se poate determina caracteristică în diferite poziții de funcționare. Curba caracteristică poate fi obținută intersectând (comanda *Intersection*) suprafața de revoluție cu suprafețele laterale ale canalului.

Studiind extinderea curbei caracteristice se poate observa că acesta este situată între două plane, paralele cu planul XOY. Această observație permite ca roata-stelată să fie

executată cu două suprafețe plane, corespunzătoare cotelor Z = 3,124 mm și respectiv Z = -3,124 mm, necesare pentru a asigura etanșarea între roată și carcasa compresorului.

Fig. 2.8. Zona de etanşare

1.2.3. Concluzii

Compresorul monoșurub cu elemente de etanșare stelate are ca organ principal de lucru un melc riglat cu 6 începuturi, care "angrenează" cu două roți stelate cu dinți cu profiluri rectilinii, în planul axial al melcului.

În lucrare, se propune o tehnologie de generare a melcului riglat cu o scula cilindrofrontală, într-o cinematică care reproduce cinematica angrenajului melc-roată melcată.

Modelarea melcului conform tehnologiei propuse se face în baza fundamentelor teoriei înfășurării suprafețelor. Se compară forma melcului astfel generat cu melcul teoretic – de tip globoidal – generat de profilurile rectilinii ale dinților roții stelate.

1.3. Modelarea, analitică și grafică, a generării unei suprafețe elicoidale necilindrice cu o sculă preformată

Problematica profilării sculelor care generează vârtejuri ordonate de suprafețe elicoidale, chiar pentru cazurile particulare ale rotoarelor compresoarelor sau a turbinelor constituie cazuri speciale care pot fi tratate în baza teoremelor fundamentale ale generării suprafețelor [1].

Radzevich S. [2], dezvoltă problematica generării suprafețelor sculptate, în baza teoremelor fundamentale ale generării suprafețelor tehnice. Analiza este fundamentată pe cinematica proceselor de prelucrare a suprafețelor.

O problemă aparte o constituie generarea suprafețelor palelor compresoarelor și a turbinelor, pentru care au fost dezvoltate o multitudine de soluții, bazate pe capacitatea noilor produse grafice de tip CAD/CAM, abordând atât problematica generării palelor cât și unele aspecte cum ar fi rugozitatea acestor suprafețe realizate prin frezare, [3].

O problematică specifică generării palelor rotorului centrifugal o constituie programarea traiectoriei sculei ca urmare a proceselor vibratorii ale corpului rotorului și ale palei, minimizarea efectului vibrației constituind o importantă cerință a bunei desfășurări a unui astfel de proces de frezare. S-au creat modelări, dezvoltându-se module specifice în limbajul C++, pentru corecția traiectoriei sculei, în scopul reducerii costurilor de fabricație [4].

Diversificarea formei sculei, astfel încât aceasta să nu mai fie cilindru de revoluție sau tronconică, ridică noi probleme. Astfel, Yao An Lu și alții [7] prezintă problematica generării suprafețelor libere cu scule mărginite de o suprafață tip butoi, sugerându-se o nouă abordare pentru generarea traiectoriilor sculelor utilizate pe mașini-unelte cu cinci axe controlate numeric. Acest lucru permite optimizarea orientării sculei în scopul maximizării volumului de material detașat.

Ling Quan și alții [8], propune o nouă soluție pentru planificarea traiectoriei sculei la prelucrarea unei pale de elice cu suprafață riglată, prin calcularea punctelor în care vectorul axei sculei intersectează forma liberă a butucului elicei. Procedeul a fost simulat în programe CAM și aplicat pe mașini de frezat cu cinci axe controlate numeric.

1.3.1. Modelarea procesului de generare a palei rotorului

Se propune, în cele ce urmează, o modelare a procesului de generare a suprafețelor active ale palei rotorului conic, cu o sculă cilindro-frontală, mărginită de o suprafață periferică primară — cilindru de revoluție.

În figura 3.1, sunt prezentate suprafața suport a palelor rotorului — suprafața de revoluție conică cu generatoare rectilinie și sistemele de referință:

XYZ este sistemul de referință fix, solidar cu axa rotorului conic;

 $X_0Y_0Z_0$ — sistem de referință mobil, cu originea în O_0 . Iniția, planele XZ și X_0Z_0 sunt suprapuse;

 $X_I Y_I Z_I$ — sistem mobil, solidar cu scula cilindro-frontală generatoare a palelor elicoidale;

 $X_0 Y_0 Z_0'$ — sistem mobil, intermediar, solidar cu $X_0 Y_0 Z_0$ în mișcarea de rotație în jurul axei *Y*.

Fig. 3.1. Poziția relativă a sculei cilindro-frontale și a conului suport; sisteme de referință

Se definește poziția relativă a sistemelor X_1 și X_0 :

$$X_1 = \alpha \cdot X_0 \text{ cu } \alpha = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}, \qquad (3.1)$$

cu α parametru constructiv.

Cinematica generării presupune mișcările:

I este mișcarea de rotație a sculei în jurul axei proprii;

II — mișcarea de rotație a rotorului în jurul axei proprii;

III — mișcarea de translație a punctului de contact a sculei cilindro-frontale cu suportul conic al rotorului, punctul O_0 .

Se consideră că elicea generată de punctul O_0 este o elice conică de pas constant în lungul axei conului suport. Parametrul elicei este p.

Poziția relativă a sistemelor X_0 ' Y_0 ' Z_0 ' și $X_0Y_0Z_0$:

$$X'_{0} = X_{0} - a, \ a = \begin{pmatrix} -R + p \cdot \theta \cdot \tan \alpha \\ 0 \\ -p \cdot \theta \end{pmatrix},$$
(3.2)

sistemele $X_0 Y_0 Z_0$, si $X_0 Y_0 Z_0$ fiind solidare în mișcarea de rotație II, vezi figura 1.

Astfel, mișcarea de rotație în jurul axei Z este descrisă de transformarea:

$$X = \omega_3^T(\theta) \cdot X_0', \tag{3.3}$$

cu θ parametru unghiular de rotație în jurul axei Z.

Ținând seama de (3.2), rezultă:

$$X = \omega_3^T \left(\theta\right) [X_0 - a], \qquad (3.4)$$

sau, mai departe, din (3.1):

$$X = \omega_3^T \left(\theta \right) \left[\alpha^T \cdot X_1 - a \right].$$
(3.5)

După dezvoltări, rezultă:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{bmatrix} \cos\alpha & 0 & -\sin\alpha \\ 0 & 1 & 0 \\ \sin\alpha & 0 & \cos\alpha \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} + \begin{pmatrix} R - p \cdot \theta \cdot \tan\alpha \\ 0 \\ p \cdot \theta \end{pmatrix} \end{bmatrix}$$
(3.6)

reprezentând mișcarea relativă a sistemului $X_IY_IZ_I$ în raport cu sistemul rotorului XYZ, în care:

R este raza cercului de bază a suprafeței conice suport;

p — parametru elicoidal, p = cst.

Ambele mărimi sunt definite ca mărimi constructive.

După dezvoltări rezultă mișcarea relativă a punctului curent din spațiul $X_I Y_I Z_I$ față de sistemul de referință al conului suport:

$$X = (X_1 \cdot \cos \alpha - Z_1 \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \cos \theta - Y_1 \cdot \sin \theta;$$

$$Y = (X_1 \cdot \cos \alpha - Z_1 \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \sin \theta + Y_1 \cdot \cos \theta;$$

$$Z = X_1 \cdot \sin \alpha + Z \cdot \cos \alpha + p \cdot \theta.$$

(3.7)

Ecuațiile (3.7) reprezintă familia de traiectorii ale punctelor din spațiul sculei cilindro-frontale generatoare în raport cu spațiul rotorului.

Dar, numai punctele aparținând suprafeței periferice primare a sculei generează, în sistemul *XYZ* al rotorului, suprafața palei.

Ca urmare, definind numai suprafața S, suprafața periferică primară a sculei cilindro-frontale, din sistemul $X_1Y_1Z_1$:

$$\begin{aligned}
X_1 &= t; \\
Y_1 &= r \cdot \cos v; \\
Z_1 &= r \cdot \sin v,
\end{aligned}$$
(3.8)

cu *t* variabil în lungul axei X_I , *v* parametru unghiular variabil și *r* raza suprafeței cilindrice *S* (mărime tehnologică).

Din (3.7) și (3.8) rezultă familia de traiectorii, în raport cu sistemul *XYZ* al palei generate de punctele aparținând suprafeței periferice primare a sculei generatoare:

$$(S)_{(\theta,r,t)} \begin{vmatrix} X = (t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \cos \theta - r \cdot \cos v \cdot \sin \theta; \\ Y = (t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \sin \theta + r \cdot \cos v \cdot \cos \theta; \\ Z = t \cdot \sin \alpha + r \cdot \sin v \cdot \cos \alpha + p \cdot \theta. \end{cases} (3.9)$$

Înfășurătoarea familiei de traiectorii este, principial:

$$S(\theta, v, t) = 0, \qquad (3.10)$$

sau, in formă vectorială:

$$\vec{R}_{(\theta)} = X(\theta, v, t) \cdot \vec{i} + Y(\theta, v, t) \cdot \vec{j} + Z(\theta, v, t) \cdot \vec{k} , \qquad (3.11)$$

în care $R_{(\theta)}$ este vectorul de poziție al punctului curent al familiei de suprafețe. Acesta se determină asociind ecuațiilor familiei de traiectorii (3.9), condiția de înfășurare:

$$\left(\vec{R}_{t},\vec{R}_{v},\vec{R}_{\theta}\right)=0, \qquad (3.12)$$

cu \vec{R}_t , \vec{R}_v , \vec{R}_{θ} — derivatele parțiale ale vectorului \vec{R} , vezi (3.11), în raport cu variabilele t, $v \neq i \theta$.

În formă algebrică, relația (3.12) se exprimă prin determinantul:

$$\begin{vmatrix} \dot{X}_{t} & \dot{Y}_{t} & \dot{Z}_{t} \\ \dot{X}_{v} & \dot{Y}_{v} & \dot{Z}_{v} \\ \dot{X}_{\theta} & \dot{Y}_{\theta} & \dot{Z}_{\theta} \end{vmatrix} = 0, \qquad (3.13)$$

cu X, Y și Z definite de ecuațiile (3.9).

De definesc derivatele parțiale:

$$\dot{X}_{t} = \cos \alpha \cdot \cos \theta;$$

$$\dot{Y}_{t} = \cos \alpha \cdot \sin \theta;$$

$$\dot{Z}_{t} = \sin \alpha.$$
(3.14)

Similar, se determină și:

$$\dot{X}_{\theta} = -(t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \sin \theta - r \cdot \cos v \cdot \cos \theta - p \cdot \tan \alpha \cdot \cos \theta;$$

$$\dot{Y}_{\theta} = (t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R - p \cdot \theta \cdot \tan \alpha) \cdot \cos \theta - r \cdot \cos v \cdot \cos \theta - p \cdot \tan \alpha \cdot \sin \theta; \quad (3.15)$$

$$\dot{Z}_{\theta} = p,$$

și, de asemenea,

$$\dot{X}_{v} = -r \cdot \cos v \cdot \sin \alpha \cdot \cos \theta + r \cdot \sin v \cdot \sin \theta;$$

$$\dot{Y}_{v} = -r \cdot \cos v \cdot \sin \alpha \cdot \sin \theta - r \cdot \sin v \cdot \cos \theta;$$

$$\dot{Z}_{v} = r \cdot \cos v \cdot \cos \alpha.$$

(3.16)

Astfel, caracteristica suprafeței generate se obține asociind ecuațiilor (3.9), condiția de înfășurare (3.13), pentru θ =cst. Pentru alte valori ale parametrului θ caracteristica se modifică.

În acest fel, forma efectivă a condiției de înfășurare se simplifică substanțial, dacă în ecuațiile (3.9)-(3.16) se acceptă $\theta = 0$.

Astfel, familia de suprafețe (3.9) devine:

$$S_{\theta=0} \begin{vmatrix} X = t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R; \\ Y = r \cdot \cos v; \\ Z = t \cdot \sin \alpha + r \cdot \sin v \cdot \cos \alpha. \end{cases}$$
(3.17)

De asemenea, pentru $\theta = 0$, rezultă derivatele parțiale:

$$\begin{aligned} \left(\dot{X}_{t}\right)_{\theta=0} &= \cos\alpha; \ \left(\dot{Y}_{t}\right)_{\theta=0} = 0; \ \left(\dot{Z}_{t}\right)_{\theta=0} = \sin\alpha; \\ \left(\dot{X}_{\varphi}\right)_{\theta=0} &= -r \cdot \cos v \cdot \cos \theta - p \cdot \tan \alpha; \ \left(\dot{Y}_{\varphi}\right)_{\theta=0} = t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R; \ \left(\dot{Z}_{\varphi}\right)_{\theta=0} = p; (3.18) \\ \left(\dot{X}_{v}\right)_{\theta=0} &= -r \cdot \cos v \cdot \sin \alpha; \ \left(\dot{Y}_{v}\right)_{\theta=0} = -r \cdot \sin v; \ \left(\dot{Z}_{\varphi}\right)_{\theta=0} = r \cdot \cos \alpha \cdot \cos v. \end{aligned}$$

În acest fel, condiția de înfășurare, vezi (3.13), pentru $\theta = 0$, are forma:

$$\begin{vmatrix} \cos \alpha & 0 & \sin \alpha \\ -r \cdot \cos v - p \cdot \tan \alpha & t \cdot \cos \alpha - r \cdot \sin v \cdot \sin \alpha + R & p \\ -r \cdot \cos v \cdot \sin \alpha & -r \cdot \sin v & r \cdot \cos v \cdot \cos \alpha \end{vmatrix} = 0.$$
(3.19)

Condiția (3.19) poate fi exprimată și în forma:

$$t = \frac{-p \cdot \sin v \cdot \cos \alpha - R \cdot \cos v \cdot \sin^2 \alpha}{\cos v \cdot \cos \alpha}.$$
 (3.20)

Ansamblul de ecuații (3.17) și (3.20) reprezintă curba caracteristică între suprafața cilindrică generatoare și viitoarea suprafață a palei rotorului, în sistemul *XYZ*, principial, în forma:

$$C_{XYZ} \begin{vmatrix} X = X(v); \\ Y = Y(v); \\ Z = Z(v). \end{cases}$$
(3.21)

Imprimând curbei caracteristice (3.21) mișcarea elicoidală \vec{V} , p, vezi și figura 1, se generează suprafața palei rotorului conic.

Notă: De asemenea, ecuațiile (3.8) și condiția (3.21) reprezintă curba caracteristică pe suprafața *S*, în sistemul $X_I Y_I Z_I$:

$$C_{X_{1}Y_{1}Z_{1}} \begin{vmatrix} X_{1} = \frac{1}{\cos\alpha\cos\nu} \Big[-p \cdot \sin\nu \cdot \cos\alpha - R \cdot \cos\nu \cdot \sin^{2}\alpha \Big]; \\ Y_{1} = r \cdot \cos\nu; \\ Z_{1} = r \cdot \sin\nu. \end{cases}$$
(3.22)

Principial, suprafața elicoidală generată de curba caracteristică, este descrisă de ecuații de forma:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \cos(\Phi) & -\sin(\Phi) & 0 \\ \sin(\Phi) & \cos(\Phi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X(v) \\ Y(v) \\ Z(v) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ p \cdot \Phi \end{pmatrix}.$$
(3.23)

1.3.2. Aplicație numerică

Se prezintă o aplicație numerică pentru un rotor având caracteristicile:

- raza de bază a corpului rotorului R = 60 mm;

- raza exterioară a palei rotorului $R_e = 150$ mm;

- unghiul de înclinare a suprafeței conice a rotorului $\alpha = 50,19^{\circ}$ mm;

- raza sculei cilindrice generatoare r = 4 mm.

În figura 3.2 și tabelul 3.1 sunt prezentate forma și coordonatele curbei caracteristice în sistemul de referință al rotorului generat, *XYZ*.

Fig. 3.2. Forma și poziția curbei caracteristice

Curba caracteristică					
X	Y	Z			
113,655	13,771	36,274			
114,587	13,854	36,280			
114,745	13,863	36,263			
115,676	13,947	36,274			
115,834	13,954	36,250			
116,766	14,040	36,267			
116,924	14,045	36,237			
117,855	14,133	36,260			
118,013	14,137	36,225			
118,944	14,226	36,252			
119,103	14,228	36,214			
120,034	14,318	36,246			
120,192	14,320	36,203			
121,123	14,411	36,239			
121,282	14,412	36,192			
122,213	14,504	36,232			
122,371	14,503	36,181			
123,302	14,597	36,225			
123,461	14,595	36,170			
124,392	14,690	36,217			

Tabelul 3.1. Coordonate ale punctelor de pe curba caracteristică

1.3.3. Concluzii

În lucrare se prezintă, în baza teoremei fundamentale a înfășurării suprafețelor, un algoritm dedicat modelării analitice a suprafeței palei aparținând unei suprafețe elicoidale necilindrice, ca urmare a generării acesteia cu o sculă preformată — corp cilindric de revoluție, corespunzând suprafeței periferice primare a unei scule cilindro-frontale.

Sunt determinate familiile de suprafețe generate de corpul cilindric, într-o mișcare elicoidală pe o elice conică, de pas constant, aparținând unui butuc de formă tronconică. Totodată se determină analitic condiția de înfășurare și, pornind de la aceasta, se determină curba caracteristică — curba de contact a suprafeței cilindrice de revoluție (corpul generator) cu flancul elicoidal al palei rotorului.

Se prezintă și un model grafic în CATIA, a flancului palei generată de curba caracteristică.

Metodica este simplă și ușor de utilizat. Similar se poate analiza și generarea cu un corp cilindric de revoluție, având o suprafață frontală sferică.

1.4. Modelarea generării palelor rotorului de compresor centrifugal prin metode analitice

Generarea suprafețelor palelor unui rotor aparținând unui compresor centrifugal este integrată în problematica mai largă referitoare la generarea suprafețelor sculpturale [2] și se poate trata în baza teoremelor fundamentale ale generării prin înfășurare a suprafețelor [1].

Complexitatea formei geometrice a palelor rotorului de compresor centrifugal precum și marea diversitate a aplicațiilor acestor tipuri de compresoare în construcții aero-spațiale [5] [7] impun utilizarea la prelucrarea prin frezare a mașinilor-unelte cu comandă numerică, cu 5 axe controlate numeric.

Aceasta impune ca la prelucrarea acestor tipuri de suprafețe să se planifice traiectoria sculei, aceasta reprezentând o problemă prioritară în tehnologia de prelucrare prin așchiere.

În acest sens, s-au făcut numeroase studii și propuneri în scopul creșterii eficienței prelucrării.

De asemenea, se constată ca programele universale NC sunt ineficiente pentru prelucrarea pompelor centrifugale [9] și se propune un model matematic pentru calculul traiectoriei sculei printr-un algoritm interactiv.

În scopul perfecționării tehnologiei de fabricare, Wu et al., propune o abordare inovativă care combină procesul de producție cu simularea numerică a generării elicelor pompelor centrifugale [10]. În aceeași lucrare se propune o metodologie rapidă de proiectare a elicelor de acest tip, obținută prin metoda curbelor spline cubice și un proces de fabricație bazat pe prelucrarea pe mașini-unelte cu 5 axe controlate numeric.

Kaino T. [11] dezvoltă comparații între diferite tehnologii de generare cu zona cilindrică sau cu cea semisferică a frezei, studiind și probleme de vibrații în așchiere la folosirea frezelor cu pas variabil.

Au fost studiate și propuse metode pentru evitarea coliziunilor între scula așchietoare și semifabricat prin determinarea traiectoriei sculei pe baza modelului geometric al palei și al corpului elicei.

În lucrare se propune o metodologie de generare a formei palei, dezvoltată în formă analitică în baza teoremei traiectoriilor de generare la prelucrarea unui rotor de compresor centrifugal. Se dezvoltă un algoritm specific pentru un corp al elicei de tip corp de revoluție cu generatoare circulară. Se realizează, de asemenea, un model grafic al generării cu freză cu cap emisferic, dezvoltat în mediul CATIA.

1.4.1. Cinematica generării. Sisteme de referință

În cele ce urmează, se examinează modelarea analitică a generării palei unui rotor generat pe un suport de tip corp de revoluție cu generatoare circulară de rază R_0 , figura 1.

În figura 1 sunt prezentate forma generatoarei corpului de revoluție, cerc de rază R_0 , sistemele de referință asociate suportului rotorului și sculei generatoare (scula deget cu profil compus: generatoare rectilinie înclinată față de axa de rotație și profil circular, de rază r_0 , la extremitatea sculei).

Fig. 4.1. Scula cilindrică frontală; butuc cu profil axial circular; sisteme de referință

Se definesc mărimea razei R_0 a profilului axial al butucului, arcul de cerc fiind definit între normalele la tangentele la arcul MN, vezi figura 1, M și N reprezentând punctele de contact ale arcului MN cu cercurile limită ale butucului, de raze R și R_t , vezi figura 1.

Normalele la arcul MN, în punctele limită M, respectiv N, determină centrul arcului de cerc O.

Mărimile R_0 , R și R_t sunt acceptate ca mărimi constructive.

Sunt definite sistemele de referință:

— sistemul XYZ fix, având axa Z solidară cu butucul;

— sistemul $X_0 Y_0 Z_0$ mobil, cu originea O_1 în punctul curent pe generatoarea circulară a butucului. Axa \vec{A} a sculei cilindro-frontale se află în planul $X_0 Z_0$;

— sistemul mobil $X'_0Y'_0Z'_0$, inițial suprapus cu *XYZ*, solidar cu $X_0Y_0Z_0$ în mișcarea elicoidală \vec{V} , *p*, axa \vec{V} fiind suprapusă axei *Z*.

— sistemul $X_I Y_I Z_I$, cu axa X_I axa suprapusă suprafeței periferice a sculei cilindro-frontale (scula deget).

Cinematica procesului de generare include miscarea de rotație în jurul axei $\vec{V}(Z)$ miscarea *I*, corelată cu miscarea de translație *II*, în lungul axei \vec{V} de parametru *p*. Miscarea de rotație a sculei cilindro-frontale în jurul axei \vec{A} este o miscare de așchiere, scula fiind imaginată ca având muchiile de așchiere aparținând suprafeței *S* — suprafața periferică primară, de revoluție, a frezei cilindro-frontale.

Facem observația că, în mișcarea *II*, suprafața *S* se autogenerează. Astfel, această mișcare a suprafeței *S* nu influențează procesul de generare. Generarea suprafeței elicoidale a sculei este definită numai de ansamblul mișcărilor *I* și *II*.

În legătură cu poziția punctelor M și N de pe generatoarea axială a suportului paletei se definesc unghiurile β_1 , respectiv β_2 , ca unghiuri pe care normalele la profilul G le formează cu axa X.

Se notează cu β unghiul normalei la profilul axial al butucului elicei în punctul curent de contact al sculei cilindro-frontale cu generatoarea G — punctul O_2 .

1.4.2. Transformări de coordonate. Model analitic al familiei de traiectoriilor de generare

Se definește poziția relativă a sistemelor $X_1Y_1Z_1$ față de axa $X_0Y_0Z_0$, cu X_1 axa sculei deget:

$$X_0 = \omega_2(\beta) \cdot X_1, \tag{4.1}$$

în care β este dat de:

$$\omega_2(\beta) = \begin{pmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{pmatrix}.$$
 (4.2)

De asemenea, se definește poziția relativă a sistemelor $X_0'Y_0Z_0'$ și $X_0Y_0Z_0$,

$$X_0' = X_0 - A, (4.3)$$

$$A = \begin{pmatrix} -R + R_0 \cdot (\cos \beta - \cos \beta_1) \\ 0 \\ -p \cdot \theta \end{pmatrix}.$$
 (4.4)

Legătura între parametrul unghiular β și parametrul θ este definită de:

$$\sin\beta = \frac{1}{R_0} \left(R_0 \cdot \sin\beta_1 - p \cdot \theta \right). \tag{4.5}$$

Mișcarea de rotație în jurul axei \vec{V} , de parametru unghiular θ este dată de:

$$X = \omega_3^T(\theta) \cdot X_0 \tag{4.6}$$

sau, din (4.3),

$$X = \omega_3^T \left(\theta \right) \cdot \left[X_0 - A \right], \tag{4.7}$$

iar ținând seama de (4.1), se obține:

$$X = \omega_3^T \left(\theta \right) \cdot \left[\omega_2 \left(\beta \right) \cdot X_1 - A \right], \tag{4.8}$$

reprezentând mișcarea spațiului $X_I Y_I Z_I$, căruia îi este asociată scula cilindro-frontală, în raport cu spațiul *XYZ* asociat cu elicea.

Prin dezvoltare se ajunge la forma:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\varphi \end{bmatrix} \cdot \begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} - \begin{pmatrix} -R + R_0 (\cos\beta - \cos\beta_1) \\ 0 \\ -p \cdot \theta \end{bmatrix}$$

$$(4.9)$$

După dezvoltările impuse se ajunge la exprimarea:

$$X = \begin{bmatrix} X_1 \cos \beta - Z_1 \sin \beta + R - R_0 (\cos \beta - \cos \beta_1) \end{bmatrix} \cos \theta - Y_1 \sin \theta;$$

$$Y = \begin{bmatrix} X_1 \cos \beta - Z_1 \sin \beta + R - R_0 (\cos \beta - \cos \beta_1) \end{bmatrix} \sin \theta + Y_1 \cos \theta;$$

$$Z = X_1 \sin \beta + Z_1 \cos \beta + p\theta.$$
(4.10)

Ecuațiile (4.10) reprezintă familia traiectoriilor de generare ale punctelor aparținând spațiului $X_I Y_I Z_I$, spațiu asociat sculei preformate, în raport cu spațiul fix, asociat elicei.

Dacă, din totalitatea punctelor spațiului $X_IY_IZ_I$ se definesc punctele locului geometric reprezentând suprafața periferică, de revoluție, a sculei, atunci relațiile (4.10) reprezintă familia traiectoriilor de generare ale punctelor aparținând suprafeței *S* în raport cu elicea — suprafața palei generate.

1.4.3. Suprafața sculei preformate — S

În figura 2 se prezintă secțiunea axială a sculei preformate și sistemul de referință asociat.

Fig. 4.2. Profilul axial a sculei S

Profilul axial al sculei preformate este format din două profiluri elementare racordate.

— *AB*, arc de cerc de ecuații:

$$AB: \begin{vmatrix} X_1 = r_0 - r_0 \cos v; \\ Y_1 = 0; \\ Z_1 = -r_0 \sin v, \end{vmatrix}$$
(4.11)

$$v_{\min} = 0; v_{\max} = k.$$
 (4.12)

Coordonatele punctului *B*:

$$X_{1B} = r_0 - r_0 \cos \kappa;$$

$$Y_{1B} = 0;$$

$$Z_{1B} = -r_0 \sin \kappa.$$

(4.13)

 $-\overline{BC}$, profil rectiliniu, de ecuații:

$$\overline{BC}: \begin{vmatrix} X_1 = r_0 (1 - \cos \kappa) + u \cdot \sin \kappa; \\ Y_1 = 0; \\ Z_1 = -r_0 \sin \kappa - u \cos \kappa. \end{cases}$$
(4.14)

Prin rotirea ansamblului de ecuații (4.11) și (4.14), în jurul axei Z_I se obțin ecuațiile parametrice ale suprafeței periferice primare a sculei preformate — freza cilindro-frontală.

Pentru zona BC se obțin ecuațiile:

$$S: \begin{vmatrix} X_1 = r_0 (1 - \cos \kappa) + u \sin \kappa; \\ Y_1 = (r_0 \sin \kappa + u \cos \kappa) \sin \gamma; \\ Z_1 = (-r_0 \sin \kappa - u \cos \kappa) \cos \gamma, \end{vmatrix}$$
(4.15)

cu γ parametru unghiular, la rotația în jurul axei Z_1 (axa sculei preformate conice).

Ansamblul ecuațiilor (4.10) și (4.15) reprezintă familia traiectoriilor de generare ale punctelor aparținând suprafeței sculei preformate S în raport cu sistemul de referință XYZ, asociat elicei.

1.4.4. Condiția de înfășurare a familiei de traiectorii

Înfășurătoarea familiei de traiectorii (4.10), (4.15) reprezintă suprafața palei generate, pala rotorului centrifugal.

Variabilele, în ansamblul de ecuații (4.10) și (4.15) sunt: θ — parametru unghiular de rotație în jurul axei *Z*; γ — parametru unghiular de rotație în jurul axei *Z*₁; *u* — parametru liniar de deplasare în lungul generatoarei conului sculei preformate, *S*.

În acest caz, condiția de înfășurare a familiei traiectoriilor de generare (4.10) și (4.15) se exprimă în forma:

$$\left(\vec{R}_{\theta}, \vec{R}_{u}, \vec{R}_{\gamma}\right) = 0. \tag{4.16}$$

în care vectorii $\vec{R}_{\theta}, \vec{R}_{u}, \vec{R}_{v}$ sunt derivatele parțiale din (4.10), (4.15):

$$\vec{R}_{\theta} = \dot{X}_{\theta}\vec{i} + \dot{Y}_{\theta}\vec{j} + \dot{Z}_{\theta}\vec{k};$$

$$\vec{R}_{u} = \dot{X}_{u}\vec{i} + \dot{Y}_{u}\vec{j} + \dot{Z}_{u}\vec{k};$$

$$\vec{R}_{\gamma} = \dot{X}_{\gamma}\vec{i} + \dot{Y}_{\gamma}\vec{j} + \dot{Z}_{\gamma}\vec{k}.$$
(4.17)

Din (4.10) se determină derivatele parțiale:

$$\begin{split} \dot{X}_{\theta} &= \left(-X_{1}\sin\beta\frac{d\beta}{d\theta} - Z_{1}\cos\beta\frac{d\beta}{d\theta} + R_{0}\sin\beta\frac{d\beta}{d\theta} \right)\cos\theta - \\ &- \left[X_{1}\cos\beta - Z_{1}\sin\beta + R - R_{0}\left(\cos\beta - \cos\beta_{1}\right) \right]\sin\theta - Y_{1}\cos\theta; \\ \dot{Y}_{\theta} &= \left(X_{1}\sin\beta\frac{d\beta}{d\theta} - Z_{1}\cos\beta\frac{d\beta}{d\theta} + R\sin\beta\frac{d\beta}{d\theta} \right)\sin\theta + \\ &+ \left[X_{1}\cos\beta - Z_{1}\sin\beta + R - R_{0}\left(\cos\beta - \cos\beta_{1}\right) \right]\cos\theta - Y_{1}\sin\theta; \\ \dot{Z}_{\theta} &= X_{1}\cos\beta\frac{d\beta}{d\theta} - Z_{1}\sin\beta\frac{d\beta}{d\theta} + p. \end{split}$$
(4.18)

Se poate observa că, din (4.5), rezultă:

$$\beta = \arcsin\left(\sin\beta_1 - \frac{p}{R_0}\theta\right) \tag{4.19}$$

și, deci,

$$\frac{d\beta}{d\theta} = \frac{\frac{-p}{R_0}}{\sqrt{1 - \left(\sin\beta_1 - \frac{p}{R_0}\theta\right)^2}}.$$
(4.20)

De asemenea, se definesc derivatele parțiale în raport cu variabila γ .

$$\dot{X}_{\gamma} = \left(\dot{X}_{1_{\gamma}}\cos\beta - \dot{Z}_{1_{\gamma}}\sin\beta\right)\cos\theta - \dot{Y}_{1_{\gamma}}\sin\theta;$$

$$\dot{Y}_{\gamma} = \left(\dot{X}_{1_{\gamma}}\cos\beta - \dot{Z}_{1_{\gamma}}\sin\beta\right)\sin\theta + \dot{Y}_{1_{\gamma}}\cos\theta;$$

$$\dot{Z}_{\gamma} = \dot{X}_{1_{\gamma}}\sin\beta + \dot{Z}_{1_{\gamma}}\cos\beta,$$

$$(4.21)$$

în care, vezi (4.15), se definesc derivatele parțiale:

$$X_{1_{\gamma}} = 0;$$

$$\dot{Y}_{1_{\gamma}} = (r_0 \sin \kappa + u \cos \kappa) \cos \gamma;$$

$$\dot{Z}_{1_{\gamma}} = (r_0 \sin \kappa + u \cos \kappa) \sin \gamma.$$

(4.22)

Se definesc derivatele parțiale în raport cu *u*:

$$\dot{X}_{u} = \left(\dot{X}_{1_{u}}\cos\beta - \dot{Z}_{1_{u}}\sin\beta\right)\cos\theta - \dot{Y}_{1_{u}}\sin\theta;$$

$$\dot{Y}_{u} = \left(\dot{X}_{1_{u}}\cos\beta - \dot{Z}_{1_{u}}\sin\beta\right)\sin\theta + \dot{Y}_{1_{u}}\cos\theta;$$

$$\dot{Z}_{1_{u}} = \dot{X}_{1_{u}}\sin\beta + \dot{Z}_{1_{u}}\cos\beta.$$

(4.23)

$$\dot{X}_{1_{u}} = \sin \kappa;$$

$$\dot{Y}_{1_{u}} = -\cos \kappa \sin \gamma;$$

$$\dot{Z}_{1_{u}} = -\cos \kappa \cos \gamma.$$
(4.24)

1.4.5. Curba caracteristică

Curba caracteristică reprezintă curba de contact între suprafața S și suprafața palei.

Este mult mai simplu a determina curba caracteristică sub forma înfășurătoarei familiei traiectoriilor de generare (4.10) și (4.15).

Caracteristica în procesul de generare, în sistemul *XYZ*, se obține asociind familiei de traiectorii (4.10), condiția de înfășurare.

În principiu, familia de traiectorii are forma:

$$X = X(\theta, \gamma, u);$$

$$Y = Y(\theta, \gamma, u);$$

$$Z = Z(\theta, \gamma, u).$$

(4.25)

Condiția de înfășurare este:

$$\left(\vec{R}_{\theta}, \vec{R}_{\gamma}, \vec{R}_{u}\right) = 0.$$

$$(4.26)$$

În plus, pentru ca locul geometric al punctelor de contact să fie o curbă, trebuie ca parametrul θ să aibă o valoare constantă:

$$\theta = \text{const.}$$
 (4.27)

Ansamblul de ecuații (4.25), (4.26) și (4.27) reprezintă, în sistemul XYZ, curba caracteristică, locul geometric al punctelor de contact între suprafața S și suprafața palei solidară rotorului pompei centrifugale, încă nedefinită, Σ .

Astfel, pentru $\theta = 0$, se determină ansamblul derivatelor parțiale, din (4.18):

$$\dot{X}_{\theta=0} = -X_1 \sin \beta \frac{d\beta}{d\theta} - Z_1 \cos \beta \frac{d\beta}{d\theta} + R_0 \sin \beta \frac{d\beta}{d\theta} - Y_1;$$

$$\dot{Y}_{\theta=0} = X_1 \cos \beta - Z_1 \sin \beta + R - R_0 (\cos \beta - \cos \beta_1);$$

$$\dot{Z}_{\theta=0} = X_1 \cos \beta \frac{d\beta}{d\theta} - Z_1 \sin \beta \frac{d\beta}{d\theta} + p$$
(4.28)

 $\operatorname{si}\left(\frac{d\beta}{d\theta}\right)_{\theta=0} = -\frac{p}{R_0 \cos\beta_1} \,.$

De asemenea, derivatele parțiale în funcție de parametrul liniar u, pentru θ =0, din (4.23):

$$\begin{aligned} \dot{X}_{u(\theta=0)} &= \dot{X}_{1u} \cos \beta_1 - \dot{Z}_{1u} \sin \beta_1; \\ \dot{Y}_{u(\theta=0)} &= \dot{Y}_{1u}; \\ \dot{Z}_{u(\theta=0)} &= \dot{X}_{1u} \sin \beta_1 + \dot{Z}_{1u} \cos \beta_1. \end{aligned}$$
(4.29)

Similar se calculează derivatele parțiale în funcție de parametrul unghiular γ , pentru θ =0, din (4.21):

$$\begin{split} \dot{X}_{\gamma(\theta=0)} &= \dot{X}_{1\gamma} \cos \beta_{1} - \dot{Z}_{1\gamma} \sin \beta_{1}; \\ \dot{Y}_{\gamma(\theta=0)} &= \dot{Y}_{1\gamma}; \\ \dot{Z}_{\gamma(\theta=0)} &= \dot{X}_{1\gamma} \sin \beta_{1} + \dot{Z}_{1\gamma} \cos \beta_{1}. \end{split}$$
(4.30)

Acum se poate scrie condiția de înfășurare (4.26), în forma:

$$0 \qquad \sin \kappa \qquad -Y_1 - \left(-X_1 \sin \beta_1 - Z_1 \cos \beta_1 + R_0 \sin \beta_1\right) \cdot \frac{p}{R_0 \cos \beta_1} \\ \left(r_0 \sin \kappa + u \cos \kappa\right) \cos \gamma \qquad -\cos \kappa \sin \gamma \qquad X_1 \cos \beta_1 - Z_1 \sin \beta_1 + R \\ \left(r_0 \sin \kappa + u \cos \kappa\right) \sin \gamma \qquad -\cos \kappa \cos \gamma \qquad p - \left(X_1 \cos \beta_1 - Z_1 \sin \beta_1\right) \cdot \frac{p}{R_0 \cos \beta_1} \\ = 0, (4.31)$$

care poate fi transcrisă în forma:

$$\begin{vmatrix} 0 & -\tan \kappa & (X_1 \sin \beta_1 + Z_1 \cos \beta_1 - R_0 \sin \beta_1) \cdot \frac{p}{R_0 \cos \beta_1} \\ \cos \gamma & \sin \gamma & X_1 \cos \beta_1 - Z_1 \sin \beta_1 + R \\ \sin \gamma & \cos \gamma & p - (X_1 \cos \beta_1 - Z_1 \sin \beta_1) \cdot \frac{p}{R_0 \cos \beta_1} \end{vmatrix} = 0.$$
(4.32)

La rândul său, (4.32) împreună cu familia de suprafețe (4.10), cu condiția θ =0, se transcrie în forma:

$$X = X_1 \cos \beta - Z_1 \sin \beta + \left[R - R_0 \left(\cos \beta - \cos \beta_1 \right) \right];$$

$$Y = Y_1;$$

$$Z = X_1 \sin \beta + Z_1 \cos \beta.,$$

(4.33)

reprezentând curba caracteristică pe flancul palei rotorului.

În relațiile (4.32), (4.33), X_I , Y_I și Z_I au semnificațiile date de relațiile (4.15). Într-adevăr, ecuațiile (4.33) reprezintă funcții depinzând de parametrii γ și u:

$$X = X(\gamma, u);$$

$$Y = Y(\gamma, u);$$

$$Z = Z(\gamma, u).$$

(4.34)

Condiția (4.32) reprezintă, în principiu, o legătură algebrică între variabilele u și γ , fie aceasta de forma

$$\gamma = \gamma(u). \tag{4.35}$$

În mod similar, ansamblul de ecuații (4.32) și (4.15) reprezintă o curbă spațială în sistemul $X_I Y_I Z_I$ al sculei cilindro-frontale, curba caracteristică identică cu cea de pe flancul palei asociată elicei.

Imprimând curbei caracteristice de forma:

$$X_{1} = X_{1}(u);$$

$$Y_{1} = Y_{1}(u);$$

$$Z_{1} = Z_{1}(u),$$

(4.36)

cu u parametru variabil, mişcarea (4.8),

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \cos\beta & 0 & -\sin\beta \\ 0 & 1 & 0 \\ \sin\beta & 0 & \cos\beta \end{pmatrix} \cdot \begin{pmatrix} X_1(u) \\ Y_1(u) \\ Z_1(u) \end{pmatrix} - \begin{pmatrix} R + R_0(\cos\beta - \cos\beta_1) \\ 0 \\ p\theta \end{pmatrix} \end{bmatrix}, (4.37)$$

se generează în sistemul *XYZ* forma parametrică a ecuației suprafeței palei solidare cu butucul — suprafață de revoluție cu profil axial circular, în principiu de forma:

$$\Sigma \begin{vmatrix} X = X(u,\theta); \\ Y = Y(u,\theta); \\ Z = Z(u,\theta). \end{cases}$$
(4.38)

Forma palei generate se pune în evidență în secțiuni plane perpendiculare pe axul butucului, în forma:

$$Z = H, H - \text{variabil}, \tag{4.39}$$

$$Z(u,\theta) = H, \qquad (4.40)$$

echivalând cu o formă principială

$$u = u(\theta). \tag{4.41}$$

Astfel, curbele reprezentând profiluri ale palei generate vor fi definite prin ecuații (matrice de coordonate):

$$\Sigma_{H} = \begin{pmatrix} X_{1} & Y_{1} & H \\ X_{2} & Y_{2} & H \\ \vdots & \vdots & \vdots \\ X_{n} & Y_{n} & H \end{pmatrix}, H \text{ variabil.}$$
(4.42)

1.4.7. Concluzii

Lucrarea abordează în formă analitică problematica generării palei unui rotor care are ca butuc o suprafață de revoluție cu generatoare circulară, cu o sculă cilindro-frontală având o suprafață periferică primară compusă: suprafață conică și o suprafață de revoluție cu generatoare circulară.

Metodica utilizată este metoda traiectoriilor de generare, determinându-se familia de suprafețe compusă în sistemul asociat butucului. Se determină în baza teoremei generale a înfășurării suprafețelor curba caracteristică asociată sistemului rotorului.

Se generează grafic modelul suprafeței palei elicei, prin imprimarea unei mișcări de generare în lungul generatoarei circulare a butucului.

Metodica fundamentală aplicată procesului de generare este riguroasă și ușor de aplicat.

Metodica prezentată poate fi aplicată și pentru forme de butuci complexe.

II. Modificări constructive ale burghielor elicoidale în scopul îmbunătățirii comportării în timpul așchierii

Burghierea, ca procedeu de prelucrare prin așchiere, este foarte larg utilizată — "circa 36% din totalul prelucrărilor prin așchiere și mai mult de 42% din timpul alocat prelucrării prin așchiere" este realizat prin burghiere López de Lacalle ¹ *et al.* Domeniul burghierii cu burghie elicoidale HSS-Co este foarte răspândit pentru intervalul de diametre $\emptyset 0.1...$ $\emptyset 30$ mm.

Ca urmare, perfecționări constructive ale burghielor elicoidale s-au făcut în mod continuu, în primul rând prin modificarea fomei muchiei de așchiere, inclusiv a tăișului transversal de asemenea, prin perfecționarea calității materialului — oțelul din care se realizează burghiul, acoperiri metalice c TiN, a suprafeței active, Lin².

Modificările constructive ale burghiului, în scopul îmbunătățirii funcționării în așchiere a acestei scule sunt multiple. Dintre acestea putem menționa:

- realizarea de burghie cu un număr de 3 sau 4 canale (fațete), 3-4 tăișuri principale, propuse de Agapiou⁵, Pena⁹ sau Hisch¹⁰.

- modificări ale formei tăișurilor transversale propuse de Paul⁴.

- Ren⁶ propune schimbarea formei suprafeței principale de așezare a tăișurilor.

- Tandon⁷ studiază modificarea formei canalelor de aducțiune a lichidelor de așchiere în zona de lucru.

-Roukema¹⁵ propune tehnologii inovatoare pentru desfășurarea procesului de burghiere.

O modificare substanțială a formei constructive a burghiului elicoidal a fost propusă de Fetecău⁸. Această modificare se referă la realizarea de burghie elicoidale cu tăișuri curbe (cu unghi de atac variabil).

Noua formă de tăiș asigură o uniformizare a încărcării energetice în lungul tăișului principal cu repercusiuni asupra uzurii sculei așchietoare.

Burghiele cu tăișuri curbe propuse de Teodor¹¹, cu unghi de atac principal descrescător de la vârf către periferie, asigură o încărcare energetică uniformă pe unitatea de lungime a tăișului, ceea ce conduce la modificarea caracterului uzurii specifice în lungul tăișului curb, având ca efect creșterea duratei active de lucru a sculei.

Noul tip de burghiu, cu tăișuri curbe, presupune imaginarea de modalități specifice de ascuțire precum procedeul toroidal propus de Fetecău⁸ et al. Acest tip de ascuțire
materializează suprafața de așezare în una sau două poziționări succesive, în raport cu un corp abraziv profilat, față de care are o mișcare oscilatorie de unghi limitat.

În lucrarea de față se propune o nouă metodă de ascuțire a burghiului cu tăișuri curbe, ascuțirea hiperboloidală, care permite generarea suprafeței de așezare a tăișului principal curb la o singură poziționare a burghiului, în raport cu o generatoare rectilinie a corpului abraziv de ascuțit.

În lucrare se prezintă geometria suprafeței de așezare, determinându-se legea de variație a unghiului de așezare în lungul tăișului curb și se determină detalonarea suprafeței de așezare principale.

Metoda hiperboloidală propusă de Teodor¹⁷ se caracterizează printr-o cinematică simplă (3 mișcări pentru ascuțirea burghiului) și prin utilizarea unor corpuri abrazive cu geometrie simplă

Pentru evidențierea caracteristicilor de lucru ale noului tip de ascuțire, pentru burghie HSS Ø15- Ø25 mm s-au realizat încercări tehnologice, determinându-se modul de variație a mărimii forței axiale și a momentului de torsiune la prelucrarea oțelului A570, în comparație cu burghie de aceleași dimensiuni și material, Rp3, cu tăișuri rectilinii.

De asemenea, s-au făcut măsurători ale variației mărimii uzurii tăișului principal al burghiului în timp.

Burghiele cu tăișuri curbe, cu ascuțire hiperboloidală a feței de așezare, au o durabilitate mult mai mare decât a burghielor cu tăișuri rectilinii, criteriul V_B [mm].

De asemenea, burghiele cu tăișuri curbe ascuțite hiperboloidal asigură o rugozitate R_a mai mică decât la găurirea cu burghiele cu tăișuri rectilinii.

2.1. Energia consumată pe unitatea de lungime a muchiei așchietoare

Burghiele cu muchie așchietoare curbilinie, cu unghi de atac variabil, descrescător de la vârful sculei, κ_t , spre periferia acesteia, κ_p , asigură o distribuție relativ uniformă a energiei consumate pe unitatea de lungime a muchiilor așchietoare față de burghiele elicoidale standard, care au muchii așchietoare principale de formă rectiline. În acest ultim caz, consumul energetic pe unitatea de lungime a tăișului crește de la axa burghiului spre periferie, ceea ce afectează schema de uzură a fațetei burghiului.

Pentru proiectarea burghiului cu trei tăișuri curbilinii, a căror muchii așchietoare principale au forma de arc de cerc, se poate exprima o dependență calitativă a consumului energetic pe unitatea de lungime a muchiei așchietoare, vezi figura 5.1.a, 5.1.b și 5.1.c.

Fig. 5.1. Burghiu cu muchii așchietoare curbilinii (**a**); parametrii geometrici ai așchiei detașate, în două poziții succesive ale procesului de burghiere: C_i și $C_{i+1}(b)$; vedere în lungul axei burghiului elicoidal (**c**)

În figura 5.1 s-au utilizat următoarele notații:

 R_H este raza muchiei așchietoare a burghiului în planul de referință;

e – poziția axei burghiului față de centrul cercului de rază R_H ;

XYZ – sistemul de referință solidar cu suprafața hiperboloidală de ascuțire, cu axa Z – axa hiperboloidului și X axă paralelă cu axa burghiului ascuțit, vezi figura 5.3.

 f_z – avansul pe dinte;

 κ_t – unghiul de atac al muchiei așchietoare principale la vârful sculei;

 κ_p – unghiul de atac al muchiei așchietoare principale la periferia sculei.

Se definește forma analitică a muchiei așchietoare principale în poziție inițială:

$$C_i \left| X^2 + Y^2 = R_H^2 \right|$$
 (5.1)

sau, după rotire:

$$C_{i+1} \left| \left(X - f_z \right)^2 + Y^2 = R_H^2 \right|, \tag{5.2}$$

ulterior, după intersectarea acestor muchii cu dreptele care reprezintă direcția radială a punctului curent (punctul în care unghiul de atac este κ),

$$\Delta_{\kappa} \begin{vmatrix} X = u_1 \cdot \sin \theta; \\ Y = u_1 \cdot \cos \theta, \end{vmatrix} \quad \theta \in \left[\left(\frac{\pi}{2} - \kappa_t \right); \left(\frac{\pi}{2} - \kappa_p \right) \right], \tag{5.3}$$

cu *u*₁ variabil (vezi figura 5.1.b), considerând următoarele condiții, rezultă:

$$u_1^2 - 2u_1 \cdot f_z \cdot \cos\theta + f_z^2 = R_H^2$$
(5.4)

ceea ce conduce la valoarea lui u_1 :

$$u_{1} = f_{z} \cdot \cos\theta \pm \sqrt{f_{z}^{2} \cdot \cos^{2}\theta + R^{2} - f_{z}^{2}}.$$
 (5.5)

Valoarea lui f_z este subunitară și, deci, pătratul acestuia este foarte mic. Se obține următoarea expresie pentru variabila u_1 :

$$u_1 = R_H + f_z \cdot \cos\theta \,. \tag{5.6}$$

Astfel, grosimea așchiei, în punctul curent, are expresia:

$$a_k = (R_H + f_z \cdot \cos\theta) - R_H = f_z \cdot \cos\theta, \qquad (5.7)$$

sau, ținând seama de:

$$\theta = \frac{\pi}{2} - \kappa \,, \tag{5.8}$$

în care θ este unghiul curent pe arcul de cerc al muchiei așchietoare, rezultă:

$$a_k = f_z \cdot \sin \kappa \,, \tag{5.9}$$

în care a_k este grosimea așchiei în punctul curent de pe muchia așchietoare. În același mod, este posibilă exprimarea poziției curente radiale,

$$r = R_H \cdot \left(\cos\kappa - \cos\kappa_t\right) \tag{5.10}$$

sau

$$\cos\kappa = \frac{r}{R_H} + \cos\kappa_t \,, \tag{5.11}$$

cu, κ_t — unghiul de atac principal la vârful sculei.

Forța elementară pe unitatea de lungime a muchiei așchietoare principale în funcție de grosimea așchiei este:

$$F_{elem} = R_H \cdot \Delta \theta \cdot R_k \text{ [N]}, \tag{5.12}$$

unde F_{elem} este forta elementară iar R_k este rezistența pe milimetru de lungime a așchiei, mărime care poate fi exprimată ca o caracteristică de material. De exemplu, pentru oțel carbon A 570, în formula (5.12) se obține:

$$R_k = -162.3 \cdot a_k^2 + 234.4 \cdot a_k + 6.163 \text{ [N/m]}.$$
(5.13)

Dacă se consideră viteza de așchiere a burghiului la raza r pe muchia de așchiere, exprimată în forma $v = \omega \cdot r_x$ [m/s], $r_x = \sqrt{r^2 + d_0^2/4}$, vezi figura 5.1.c, cu ω viteza unghiulară a burghiului (rad/sec), atunci lucrul mecanic poate fi exprimat în forma:

$$P = F_{elem} \cdot v = F_{elem} \cdot r_x \cdot \omega$$
 [W]. (5.14)

În figura 5.1.c este definită "grosimea elementară a așchiei" a_k corespunzătoare punctului considerat de pe muchia așchietoare și r_x este raza punctului curent pe muchia așchietoare a burghiului.

Astfel, energia consumată pe unitate de lungime (lucrul mecanic în lungul muchiei așchietoare) este:

$$q_{ak} = \frac{P}{R_H \cdot \Delta \theta} \quad [W/m] \tag{5.15}$$

sau

$$q_{ak} = \frac{F_{elem} \cdot \left(R_H \cdot \cos \kappa - e\right) \cdot \omega}{R_H \cdot \Delta \theta} \quad [W/m]$$
(5.16)

unde

$$e = R_H \cdot \cos \kappa_t$$
, vezi figura 5.1. (5.17)

În cele din urmă rezultă:

$$q_{ak} = R_k \cdot R_H \cdot \omega (\cos \kappa - \cos \kappa_t) \, [W/m]$$
(5.18)

Prin comparație, o reprezentare a valorii energetice consumate pe unitate, q_{ak} , pe unitate de lungime a muchiei așchietoare principale a burghiului cu muchii rectilinii este prezentată în figura 5.2. Încărcarea energetică pe unitate de lungime a fost calculată pentru ambele tipuri de burghie, cel standard și cel cu muchii așchietoare curbilinii, în aceleași condiții de lucru: diametru al burghiului, avans și material prelucrat.

 $\hat{I}n$ (5.18) se definesc:

 κ_t este unghiul de atac principal la vârful sculei;

 κ – unghiul de atac principal în punctul curent.

Fig. 5.2. Consumul energetic pe unitate de lungime a muchiei așchietoare; r_x este raza pe muchia burghiului

Evident, muchia așchietoare cu arc de cerc va duce la o descreștere a încărcării energetice în toate punctele muchiei așchietoare a burghiului.

2.2. Modelul analitic al suprafeței de ascuțire hiperboloidale

Modelul analitic utilizat pentru generarea suprafeței flancului burghiului elicoidale multi-tăiș (în acest caz burghiu elicoidal cu trei muchii așchietoare) este definit de o suprafață hiperboloidală, vezi figura 5.3, în mișcarea de oscilație a burghiului, față de generatoarea corpului abraziv.

Sistemele de referință sunt definite în figura 5.3:

Fig. 5.3. Cinematica ascuțirii hiperboloidale: A — rotația corpului abraziv; B — mișcarea oscilatorie a burghiului elicoidal; C — mișcare de avans intermitent a burghiului ascuțit

- *XYZ* este sistemul de referință al suprafeței hiperboloidale; axa acestei suprafețe este axa *Z*;

- $X_I Y_I Z_I$ – sistem de referință legat de generatoarea rectilinie a hiperboloidului;

- $X_2Y_2Z_2$ – sistem de referință legat de burghiul ascuțit (axa X_2 suprapusă pe axa burghiului).

Suprafața hiperbolidală de revoluție este generată de o dreaptă care aparține sistemului de referință $X_I Y_I Z_I$ și care are ecuațiile parametrice:

$$\Delta : \begin{vmatrix} X_1 = u \cdot \sin \lambda; \\ Y_1 = 0; \\ Z_1 = u \cdot \cos \lambda, \end{vmatrix}$$
(5.19)

în care u este parametru variabil, măsurat în lungul generatoarei rectilinii (Δ) a hiperbolidului. Rotația în jurul axei Z (axa hiperboloidului), cu φ parametru unghiular variabil, definește o familie de drepte, cu exprimarea parametrică:

$$X = u \cdot \sin \lambda \cdot \cos \varphi - R_0 \cdot \sin \varphi;$$

$$Y = u \cdot \sin \lambda \cdot \sin \varphi + R_0 \cdot \cos \varphi;$$

$$Z = u \cdot \cos \lambda.$$

(5.20)

 $R_0 = OO_1$, vezi figura 5.3.

Ecuațiile (5.20) reprezintă modelul analitic al suprafeței flancului burghiului elicoidal cu muchii curbilinii.

2.3. Caracteristicile muchiilor așchietoare principale

Muchia așchietore este un arc rezultat din intersecția hiperboloidului în rotație (5.20), cu un plan perpendicular pe axa de revoluție, vezi figura 5.4.

Fig. 5.4. Sistemul de referință al muchiei așchietoare

Prin urmare, muchia așchietoare poate fi un arc aparținând cercului de rază R_H , raza reprezentând secțiunea transversală a hiperboloidului.

Pentru secțiunile plane, caracterizate de ecuația Z = H, cu H variabilă arbitrară, determinată din considerente constructive, pe diametrul burghiului ascuțit, rezultă condiția:

$$H = u \cdot \cos \lambda \tag{5.21}$$

pentru

$$H = H_0 + d_0 / 2, \tag{5.22}$$

unde: d_0 este diametrul miezului burghiului, H_0 este distanța între axa burghiului și secțiunea transversală minimă a hiperboloidului. H_0 este parametru constructiv.

Muchia așchietoare C_H , ca intersecție a planului (Z=H) cu suprafața hiperboloidală (vezi figura 5.4) este determinată ca:

$$C_{H}: \begin{vmatrix} X = H \cdot tg\lambda \cdot \cos\varphi - R_{0} \cdot \sin\varphi; \\ Y = H \cdot tg\lambda \cdot \sin\varphi + R_{0} \cdot \cos\varphi; \\ Z = H_{0} + d_{0}/2. \end{cases}$$
(5.23)

Ca alternativă, ecuația (5.24) reprezintă un cerc în planul Z = H,

$$X^{2} + Y^{2} = H^{2} \cdot tg^{2}\lambda + R_{0}^{2}.$$
 (5.24)

Forma (5.24) reprezintă cercul căruia îi aparține muchia așchietoare a burghiului,

$$X^{2} + Y^{2} = R_{H}^{2}$$
, unde $R_{H} = \sqrt{H^{2} \cdot tan \lambda + R_{0}^{2}}$. (5.25)

Ecuațiile muchiilor așchietoare principale sunt exprimate în propriul sistem de referință, $X_2Y_2Z_2$, vezi figura 5.4, unde axa X_2 este axa burghiului ascuțit, sunt:

$$C_{H_{X_2Y_2Z_2}} \begin{vmatrix} X_2 = H \cdot tg\lambda \cdot \cos\varphi - R_0 \cdot \sin\varphi; \\ Y_2 = H \cdot tg\lambda \cdot \sin\varphi + R_0 \cdot \cos\varphi - e; \\ Z_2 = d_0/2. \end{cases}$$
(5.26)

2.4. Variația unghiului de așezare

Unghiul de așezare α_{r_x} se definește în sistemul constructiv al sculei într-un plan paralel cu axa burghiului, planul perpendicular pe planul de bază, în punctul considerat de pe tăiș, vezi figura 5.4. Planul de bază este planul care conține punctul considerat de pe tăiș și este perpendicular pe mișcarea principală (direcția vitezei punctului M, în mișcarea de rotație a burghiului). Conform notațiilor din figura 5.4, dreapta normală la planul ortogonal este determinat de vectorul:

$$\vec{n}_{P_M} = -\cos\beta_x \cdot \vec{j} - \sin\beta_x \cdot \vec{k} .$$
(5.27)

Dacă se definește:

$$\beta_x = \arcsin\left[\frac{d_0}{2 \cdot r_x}\right],\tag{5.28}$$

în care r_x este raza cilindrului pe care se află punctul *M*, punct în care este definit unghiul α_{r_x} .

Ecuația planului P_M , paralel cu axa burghiului (axa X_2) este:

$$P_M : \left[Y_2 - \sqrt{r_x^2 - d_0^2 / 4} \right] \cdot \cos \beta_x + \left[Z_2 - d_0 / 2 \right] \cdot \sin \beta_x = 0 , \qquad (5.29)$$

unde d_0 este diametrul miezului burghiului.

Acum se poate defini curba de intersecție între flancul muchiei așchietoare principale (suprafață hiperboloidală) și planul ortogonal.

Deci ecuațiile suprafeței hiperboloidale, vezi (5.30), reprezentând suprafața de așezare, în sistemul de referință al burghiului $X_2Y_2Z_2$, sunt:

$$A_{\alpha} : \begin{vmatrix} X_2 = u \cdot \sin \lambda \cdot \cos \varphi - R_0 \cdot \sin \varphi; \\ Y_2 = u \cdot \sin \lambda \cdot \sin \varphi + R_0 \cdot \cos \varphi - e; \\ Z_2 = u \cdot \cos \lambda - H_0, \end{vmatrix}$$
(5.30)

unde $u \neq \phi$ sunt parametri independenți variabili, vezi figura 5.4. Valorile R_0 , e, λ , d_0 , H_0 sunt definite ca mărimi constructive.

Planul ortogonal (5.29) și suprafața hiperboloidală (5.30), ambele definite în același sistem de referință, conduc la condiția:

$$\begin{bmatrix} u \cdot \sin \lambda \cdot \sin \varphi + R_0 \cdot \cos \varphi - e - \sqrt{r_x^2 - d_0^2 / 4} \end{bmatrix} \cdot \cos \beta_x + \\ + [u \cdot \cos \lambda - H_0 - d_0 / 2] \cdot \sin \beta_x = 0.$$
(5.31)

Teoretic, condiția (5.31) determină un loc geometric în sistemul de referință $X_2Y_2Z_2$, ca relație algebrică între parametrii *u* și φ .

Figura 5.5 prezintă familia curbelor de intersecție pe suprafața A_{α} , vezi și figura 5.4, pentru diverse valori ale razei r_x , corespunzătoare valorilor parametrilor constructivi prezentați în tabelul 5.1.

Fig. 5.5. Curbele de intersecție între fața de așezare și planul ortogonal pentru $\lambda = 6^{\circ}$ Tabelul 5.1. Parametrii geometrici ai burghiului (D = 20 mm - diametrulburghiului; $R_0 = 10 \text{ mm}$; $\lambda = 6^{\circ}$; $\chi_p = 5^{\circ}$; $\chi_t = 60^{\circ}$)

Parametrul	Ecuația	Valoarea [mm]
R _H	$R_H = \frac{\sqrt{D^2/4 - d_0^2/4}}{\cos \kappa_p - \cos \kappa_t}$	19.69
d ₀	$d_0 = 0.12 \cdot D$	2.40
е	$e = R_H \cdot \cos \kappa_t$	9.94
R ₀	$R_0 = e$	9.94
H ₀	$H_0 = R_H \cdot \sin \kappa_t / \tan \lambda$	163.89

Ansamblul ecuațiilor (5.30) și (5.31) reprezintă, pe suprafața A_{α} , curba de intersecție cu planul ortogonal. Unghiul între tangenta la această curbă și direcția mișcării principale (în timpul mișcării de rotație a burghiului), care este conținută în planul perpendicular pe axa burghiului, trecând prin punctul considerat de pe tăiș, este unghiul de așezare α_{r_x} .

Evident, este imperativ ca unghiul β_x să respecte condiția: $\beta_x < \frac{\pi}{2}$.

Variația unghiului de așezare este definită în figura 5.6, pentru un burghiul cu diametrul D = 20 mm și pentru parametrii geometrici prezentați în tabelul 5.1. Trebuie remarcat faptul că unghiul de așezare este suficient de mare pe toată lungimea tăișului principal. Raza r_x este raza burghiului elicoidal.

Fig. 5.6. Legea de variație a unghiului de așezare în lungul tăișului principal — modelul de ascuțire hiperboloidal; r_x este valoarea razei la punctul curent considerat pe tăiș

2.5. Detalonarea feței de așezare

Valoarea detalonării feței de așezare pe muchia de așchiere principală, δ_{r_x} , pentru punctele aparținând suprafeței hiperboloidale, în plane perpendiculare pe axa burghiului, se definește ca:

$$X_2 = R_H \cdot \sin \kappa, \tag{5.32}$$

unde κ - este unghiul de atac.

Condiția de detalonare în punctul M, aparținând planului X_2Y_2 , este:

$$\rho < r_x; \ r_x = \sqrt{r^2 + d_0^2 / 4} \tag{5.33}$$

unde ρ este raza polară a punctului în care se determină detalonarea, în planul de măsurare, vezi figura 5.7.

Fig. 5.7. Valoarea detalonării feței de așezare pe cercul de rază r_x

Valorile parametrilor R_H și e se determină din condiția de a fi satisfăcută o anumită variație a mărimii unghiului de atac în lungul muchiei așchietoare principale a burghiului:

$$r = R_H \left(\cos \kappa_t - \cos \kappa \right), \text{ vezi și figura 5.4.}$$
(5.34)

Pentru $r_x = D/2$, se obține formula:

$$R_{H} = \frac{\sqrt{D^{2}/4 - d_{0}^{2}/4}}{\cos \kappa_{p} - \cos \kappa_{t}};$$
(5.35)

şi

$$e = \frac{\sqrt{D^2/4 - d_0^2/4}}{\cos \kappa_p - \cos \kappa_t} \cdot \cos \kappa_t.$$
(5.36)

Ecuația (5.31) determină o relație între parametrii H, λ și R_0 ai suprafeței hiperboloidale.

Intersecția suprafeței elicoidale cu planul (5.32) determină parametrul *u*:

$$u = \frac{R_H \cdot \sin \kappa + R_0 \cdot \sin \varphi}{\sin \lambda \cdot \cos \varphi}.$$
(5.37)

Acest lucru permite determinarea analitică a formei curbei de detalonare în planul X_2Y_2 , din ecuațiile (5.30) și (5.37):

$$Y_{2} = \frac{R_{H} \cdot \sin \kappa + R_{0} \cdot \sin \varphi}{\sin \lambda \cdot \cos \varphi} \cdot \sin \lambda \cdot \sin \varphi + R_{0} \cdot \cos \varphi - e;$$

$$Z_{2} = \frac{R_{H} \cdot \sin \kappa + R_{0} \cdot \sin \varphi}{\sin \lambda \cdot \cos \varphi} \cdot \cos \lambda - H_{0}.$$
(5.38)

Raza polară a curbei de detalonare, în corelație cu (5.38) este:

$$\rho = \sqrt{Y_2^2 + Z_2^2},\tag{5.39}$$

ceea ce conduce la condiția de detalonare,

$$\left|\sqrt{Y_2^2 + Z_2^2}\right| < \left|\sqrt{r^2 + d_0^2/4}\right|,\tag{5.40}$$

cu r calculat din (5.34), pentru punctul curent aflat la raza r_x pe muchia așchietoare principală.

Figura 5.8 prezintă curbele de detalonare pe fața de așezare a dintelui ascuțit, pentru diferite valori ale razei la care se află punctul curent pe muchia așchietoare principală. Liniile de detalonare au fost calculate pentru următorii parametri de ascuțire: D = 200 mm; $R_0 = 10$ mm; $\lambda = 6^\circ$; $\chi_p = 5^\circ$; $\chi_t = 60^\circ$. Este evident faptul că, pentru acești parametri ai suprafeței hiperboloidale, se poate asigura detalonarea.

Fig. 5.8. Curbele de detalonare pe suprafața de așezare

Figura 5.9 prezintă burghiul cu trei tăișuri curbe, ascuțit după metoda hiperboloidală, în conformitate cu procedeul prezentat.

Fig. 5.9. Burghiu elicoidal cu trei tăișuri curbe

În continuare se prezintă câteva teste comparative între burghiele cu tăișuri curbe și burghiele standard, cu tăișuri rectilinii. Burghiele au fost fabricate în aceleași condiții, din oțel rapid HS 18-0-1 (SR EN ISO 4957:2002) la Fabrica de Scule Râșnov, România.

2.6. Rezultate experimentale privind uzura burghielor

Testele au fost realizate utilizând un centru de prelucrare HAAS, model VM3, cu putere de 22,4 kW, fluid de așchiere TRIM SC11, la un debit de 5 l/min. Drept material așchiat s-au folosit plăci de oțel laminat A570, cu dimensiunile $350 \times 350 \times 50$ mm. Testele au avut în vedere criteriul de uzură v_B .

Scopul testelor de uzură a fost de a evidenția modelul de uzură specific pentru burghiele cu muchie așchietoare curbă, ascuțite prin metoda hiperboloidală.

Măsurătorile au fost realizate la fiecare 1400 mm lungime de prelucrare cumulată pentru găurile cu diametrul de 20 mm și respectiv 1600 mm lungime de prelucrare cumulată pentru găurile cu diametrul de 16 mm. Determinarea lungimii de prelucrare s-a făcut cu ajutorul ciclului de găurire programat pe centrul de prelucrare CNC menționat.

Principalii parametri de evaluare au fost viteza de așchiere și geometria burghiului, vezi tabelul 5.2.

Burghiul / Diametrul	Viteza de așchiere (v _c) [m/min]	Avansul (f _z) [mm/rot]		
BTR1-BTC1 – Ø20	28,26	0,16		
BTR2-BTC2 – Ø20	32	0,16		
BTR1-BTC1 – Ø16	25,12	0,1		
BTR2-BTC2 – Ø16	40	0,1		

Tabelul 5.2. Parametrii ciclului de lucru

BTR – burghiu cu tăişuri rectilinii;

BTC – burghiu cu tăișuri curbilinii.

În cazul burghielor cu două tăișuri rectilinii, măsurarea uzurii (criteriul v_B), vezi figura 12, a fost făcută pentru ambele muchii așchietoare, iar pentru burghiele cu muchii așchietoare curbe măsurarea s-a făcut pentru toate cele trei tăișuri, în ambele cazuri luându-se în considerare tăișul cu uzura maximă. Uzura burghiului pe fața de așezare, criteriul v_B , este factorul principal care influențează rugozitatea suprafeței prelucrate. Prin urmare, acest criteriu reprezintă un criteriu tehnologic. În continuare sunt comparate cele două geometrii ale burghiului, respectiv forma rectilinie și cea curbilinie a muchiei așchietoare. Materialul burghielor a fost HS 18-0-1 (SR EN ISO 4957:2002), fără acoperire.

Burghiele testate au avut duritatea între 61 și 63 HRC — burghiele standard și între 57 și 64 HRC cele cu muchii așchietoare curbe.

2.7. Valori experimentale și interpretarea rezultatelor

În figurile 5.10÷5.14 sunt prezentate diagramele de dependență între uzură și timpul de prelucrare. Măsurarea uzurii feței de așezare, criteriul v_B , s-a realizat la intersecția între muchia așchietoare principală și cilindrul cu diametrul egal cu diametrul exterior al burghiului.

Experimentele au demonstrat faptul că modelul caracteristic de uzură pentru fața de așezare principală este semnificativ diferit pentru burghiele cu tăișuri rectilinii față de cele cu tăișuri curbilinii, primele prezentând o uzură accentuată la periferie. Acest lucru demonstrează durabilitatea crescută a burghielor cu tăișuri curbilinii.

Fig. 5.10. Măsurarea uzurii, criteriul v_B, utilizând instrumentul Digimizer

Fig. 5.11. Diagrama uzură—timp, burghiu Ø20 mm

Fig. 5.12. *BTR2_*Ø20; *optical zoom:* 6,3X (*a*); *BTC2_*Ø20; *optical zoom:* 6,3X (*b*)

Fig. 5.13. Diagrama uzură—timp, burghiu Ø16 mm

Fig. 5.14. BTR1_Ø16; optical zoom: 12,5X (a); BTC1_Ø16; optical zoom: 6,3X (b)

2.6.1. Rezultate experimentale privind rugozitatea suprafețelor prelucrate

Testele de măsurare a rugozității au fost realizate pentru determinarea avantajelor formei geometrice propuse a burghielor cu muchii de așchiere curbilinii față de cele standard, cu muchii așchietoare rectilinii.

Cercetările experimentale au fost realizate utilizând șase burghie elicoidale realizate din oțel rapid HS 18-0-1 (SR EN ISO 4957:2002), trei dintre ele fiind de formă standard, cu tăișuri rectilinii și celelalte trei fiind burghie cu tăișuri curbilinii. Din fiecare formă un burghiu a avut diametrul Ø20 mm unul Ø18 mm și unul Ø16 mm. Pentru realizarea testelor s-a folosit ca material prelucrat oțel laminat A570, având compoziția conform SR EN 10025, vezi tabelul 5.3.

Tabelul 5.3. Compoziția chimică a oțelului A570

C [%]	Mn [%]	Si [%]	P [%]	S [%]	Cu [%]
0.22	0.37	0.3	0.04	0.05	0.035

Cercetările au fost realizate în cadrul departamentului Ingineria Fabricației al Facultății de Inginerie, Universitatea "Dunărea de Jos" din Galați, utilizând mașina de găurit G16, fluid de așchiere TRIM SC511, debit 5 l/min și la S.C. Sidem S.R.L. Suceava, România, utilizând un centru de prelucrare HAAS, model VM3, cu putere de 22,4 kW, fluid de așchiere TRIM SC11, la un debit de 5 l/min. Pentru măsurarea rugozității s-a folosit un rugozimetru Taylor Hobson Surtronic 3+. Parametrii de lucru sunt prezentați în tabelele 5.4.

(D) [mm]	(f _z) [mm/rot]	(v _c) [m/min]
BTR-Ø18	0,1; 0,16; 0,25	10,17; 25,43
BTR-Ø20	0,1; 0,16; 0,25	11,3; 28,26
BTC-Ø18	0,1; 0,16; 0,25	10,17; 25,43
BTC-Ø20	0,1; 0,16; 0,25	11,3; 28,26

Tabel 5.4. Parametri de lucru

A fost evaluată influența geometriei burghielor și a parametrilor regimului de așchiere asupra rugozității suprafeței prelucrate. Valorile experimentale obținute sunt prezentate în figurile $5.15\div5.16$.

Fig. 5.15. Variația rugozității R_a pentru BTR Ø18 - BTC Ø18, $v_c = 10.17$ m/min (**a**); $v_c = 25.43$ m/min (**b**)

Fig. 5.16. Variația rugozității R_a pentru BTR Ø20 -BTC Ø20, $v_c = 11.30$ m/min (**a**); $v_c = 28.26$ m/min (**b**)

Rezultatele experimentale demonstrează că, datorită geometriei specifice a tăișurilor curbilinii (unghi de atac foarte mic la periferia burghiului, $\kappa_p=5^\circ$), rugozitatea suprafeței generate este mai mică pentru acest tip de burghiu în comparație cu rugozitatea obținută la prelucrarea cu burghie standard. Concluzia este valabilă pentru toate valorile avansului analizate.

a). Diagrama forță—avans pentru burghiele standard (BTR)

b). *Diagrama forță*—avans pentru burghiele standard (BTC)

c). Diagrama moment de torsiune—avans pentru burghiele standard (BTR)

d). Diagrama moment de torsiune—avans pentru burghiele standard (BTC)
 Fig. 5.17. Diagramă în coordonate logaritmice a variației forței axiale și momentului de torsiune la prelucrarea oțelului A570

2.6.2. Rezultate experimentale privind evaluarea forței axiale și a momentului de torsiune la burghiere

Burghierea este un procedeu cu consum energetic specific mare, astfel că, numeroși specialiști precum Hamade¹², Velumani¹³ și Kaplan¹⁴ au fost preocupați de predicția mărimii forțelor și momentului de burghierea cu scule monobloc a oțelurilor și chiar a maselor plastice.

Pentru a se stabili dependența între forța axială respectiv între momentul de torsiune și diametrul burghiului s-au utilizat trei burghie elicoidale cu tăișuri rectilinii (cu diametre de Ø20 mm, Ø18 mm și respectiv Ø16 mm) și trei burghie elicoidale cu tăișuri curbilinii, cu aceleași diametre. Materialul prelucrat a fost oțel A570.

Pentru găurire s-a folosit o mașină de găurit cu coloană 6GMA1 (fabricată în România). Echipamentul utilizat pentru achiziționarea datelor a fost: dispozitiv tensometric Kistler, amplificator electronic Kistler 5070A×01xx, cabluri de conectare și un computer cu placă de achiziție, pre-calibrată de către fabricant.

Testele au fost realizate în condiții de așchiere uscată, adâncimea găurilor (până la $1,5 \times D$, *D* fiind diametrul burghiului) fiind corelată cu timpul de achiziție a datelor (7 și 10 secunde).

Condițiile de lucru pentru eșantioanele testate sunt prezentate în tabelul 5.5.

Drills	(v _c) [m/min]	(f _z) [mm/rot]		
BTR-BTC/20	17,6	0,16		
BTR-BTC/18	15,8	0,25		
BTR-BTC/16	14,1	0,4		

Tabelul 5.5. Parametrii de lucru

Tabelele 5.6 și 5.7 prezintă valorile medii ale forțelor axiale și respectiv momentului de torsiune calculate pentru zona de lucru sub încărcare a burghiului.

Tabelul 5.6. Valorile forței axiale F_z [N] la prelucrarea oțelului A570

	$D = \emptyset 20 mm$			$D = \emptyset 18 mm$			$D = \emptyset 16 mm$		
Tipul burghiului	f _z [mm/rot]								
8	0,16	0,25	0,4	0,16	0,25	0,4	0,16	0,25	0,4
F _{Z_BTR} [N]	923	1108	1468	845	916	1303	747	874	1198
F _{Z_BTC} [N]	725	921	1228	636	807	1027	591	720	970

	$D = \emptyset 20 mm$			$D = \emptyset 18 mm$			$D = \emptyset 16 mm$		
Tipul burghiului	f _z [mm/rot]								
	0,16	0,25	0,4	0,16	0,25	0,4	0,16	0,25	0,4
M _{Z_BTR} [N [·] m]	26	36	54	24	31	47	18	24	35
M _{Z_BTC} [N [·] m]	42	56	70	37	41	56	26	34	41

2.7. Concluzii

Măsurările experimentale ale forței axiale și ale momentului de torsiune pentru burghiele standard și respectiv cele cu muchii așchietoare curbilinii demonstrează următoarele: în aceleași condiții de lucru (vezi tabelele 5.6 și 5.7), forța axială, F_Z , este mai mică pentru burghiele cu trei tăișuri datorită formei tipice a vârfului burghiului, independent de valoarea avansului; burghiele cu tăișuri curbilinii necesită un moment de torsiune mai mare decât burghiele standard, acest lucru fiind valabil pentru toate valorile de avans analizate. Acest lucru se datorează lungimii mai mari a muchiei așchietoare curbe față de muchia așchietoare rectilinie.

Avantajele noii metode de ascuțire (ascuțirea hiperboloidală) sunt:

- asigurarea unei forme circulare a muchiei așchietoare ceea ce determină creșterea lungimii acesteia cu impact direct asupra reducerii încărcării energetice pe unitate de lungime;

- o cinematică simplă, utilizând un corp abraziv cilindric, ușor de profilat și reascuțit;

- o bună rugozitate a feței de așezare și creșterea durabilității burghiului, datorită faptului că fața de așezare este generată în lungul muchiei așchietoare principale a burghiului ascuțit.

Noile tipuri de burghie au fost prelucrate conform geometriei impuse: unghi de atac la vârful sculei $\kappa_t = 60^0$ și $\kappa_p = 5^0$ la periferie, pentru Ø16÷ Ø20 mm.

Burghiele elicoidale ascuțite conform noii metode au fost testate în aceleași condiții de lucru ca și burghiele standard.

Datele experimentale dovedesc:

- burghiele cu tăișuri curbilinii ascuțite conform noii metode prezintă o durabilitate crescută (criteriul de uzură v_B) în comparație cu cele cu tăișuri rectilinii, datorită distribuției uniforme a încărcării energetice unitare în lungul muchiei așchietoare principale;

- rugozitatea suprafețelor prelucrate cu burghie cu tăișuri curbilinii (criteriul R_a) este superioară celei obținute la prelucrarea cu burghie standard, în aceleași de lucru (viteză de așchiere și avans);

- forța axială la prelucrarea cu burghie cu tăișuri curbe este mai redusă decât la prelucrarea cu burghie standard, la aceeași valoare a avansului, datorită vârfului piramidal în cazul primului tip de burghie;

- momentul de torsiune la prelucrarea cu burghie cu tăișuri curbilinii este mai mare decât la prelucrarea cu burghie standard, la aceeași valoare a avansului, datorită lungimii crescute a lungimii muchiei așchietoare principale.

În concluzie, burghiele din oțel rapid, cu trei tăișuri, asigură o durabilitate crescută a muchiilor așchietoare și, în același timp, o rugozitate mai bună a suprafeței prelucrate. În aceleași condiții de lucru, burghiele cu trei tăișuri sunt calitativ superioare celor standard.

2.8. Aspecte referitoare la rugozitatea suprafețelor prelucrate prin burghiere

În stasul EN ISO 4287-1997 rugozitatea suprafeței estre definită ca: "ansamblul neregularităților care formează relieful suprafețelor reale, al căror pas este relativ mic în raport cu adâncimea lor".

Există diverse criterii pentru aprecierea rugozității, cele mai frecvent utilizate fiind:

- abaterea medie aritmetică (R_a);

- înălțimea maximă a profilului (R_p) ;

- adâncimea maximă de gol a profilului (R_v) ;
- înălțimea totală a profilului (R_t) ;
- abaterea medie pătratică a profilului (R_q) .

Criteriul R_a este cel mai des utilizat și media aritmetică a valorilor absolute ale ordonatelor profilului în limita unei lungimi de bază [28]. Ordonatele profilului se determină față de linia de referință, linia medie a profilului (vezi figura 5.18). Conform SR EN ISO 4287 : 2003, linia medie a profilului este linia de referință care are forma profilului geometric și care, în limitele lungimii de bază, împarte profilul efectiv astfel încât suma pătratelor ordonatelor punctelor profilului față de această linie să fie minimă (fig. 5.19).

Fig. 5.18 *Linia medie și elementele unei neregularități a profilului [SR EN ISO* 4287 : 2003]

Formula de calcul pentru parametrul R_a este [SR EN ISO 4287 : 2003]:

$$R_a \approx \frac{1}{n} \sum_{j=1}^{n} |y_j|.$$
(5.41)

Fig. 5.19 Abaterea medie aritmetică a profilului - R_a , abaterea medie pătratică a profilului - R_a [SR EN ISO 4287 : 2003]

2.8.1. Cercetări experimentale privind comportarea în așchiere a burghielor elicoidale cu 2 tăișuri rectilinii

2.8.1.1. Premisele cercetării experimentale

La prelucrarea metalelor, datorită structurii izotrope a acestora, este necesară analizarea atât a criteriilor de performanță tehnică precum și a factorilor asociați acestora în operațiunile de burghiere, definiți sistematic în figura 5.20.

Fig. 5.20. Factori asociați criteriilor de performanță în procesul de burghiere [26]

În cadrul cercetărilor efectuate, determinările experimentale se bazează pe un studiu comparativ al performanțelor în așchiere a burghielor cu două tăișuri rectilinii: determinarea rugozității suprafețelor alezajelor prelucrate prin burghiere, experimental, prin analiză comparativă, cu valorile obținute pe baza unui model geometric simplificat, original.

Sintetic, cercetarea experimentală privind comportarea în așchiere a burghielor elicoidale cu două tăișuri rectilinii, poate fi reprezentată în conformitate cu figura 5.21.

Fig. 5.21. Reprezentarea schematică a cercetării experimentale

2.8.1.2. Descrierea echipamentului și a metodologiei de cercetare experimentală

În vederea stabilirii rolului pe care îl joacă noua formă propusă a geometriei tăișurilor principale la prelucrarea prin burghiere, s-au realizat încercări de rugozitate, prin luarea în discuție a burghielor cu două tăișuri rectilinii standard.

Echipamentul experimental

În cercetarea experimentală, s-a utilizat un set de două burghie elicoidale din oțel rapid, Rp3, cu două tăișuri rectilinii, în gama de diametre Ø8 mm și Ø10 mm. Pentru realizarea testelor, s-au utilizat 24 de plăci cu dimensiunile 210x62x32 mm, 8 din PA6 (poliamidă – ertalon 6 SA), 8 din POM C (poliacetal – ertacetal C) și 8 din PEHD 1000, având proprietățile mecanice definite în tabelele 5.8, 5.9, respectiv 5.10.

Limita de curgere, σ _c [MPa]		Rezistența la tracțiune, σ _r [MPa]		Alungirea la rupere, ε [%]		Duritate HB	Modulul de elasticitate, E [MPa]	
+	++	+	++	+	++	+	+	++
76	45	76	45	>50	>100	150	3.25	1.40

 Tabelul 5.8. Caracteristici mecanice PA6

Tabelul 5.9. Caracteristici mecanice POMC

Limi curș σ _c [N	ita de gere, MPa]	Rezistența la tracțiune,Alungirea la rupere,σr [MPa]ε [%]		girea la pere, [%]	Duritate HB	Modulul de elasticitate, E [MPa]		
+	++	+	++	+	++	+	+	++
68	68	68	68	35	35	140	3.10	3.10

 Tabelul 5.10. Caracteristici mecanice PEHD 1000

Limita de curgere, σ _c [MPa]	Rezistența la tracțiune, σ _r [MPa]	Alungirea la rupere, ε [%]	Duritate HB	Modulul de elasticitate, E [MPa]
19	15	>50	36	750

Legendă:

+ - valori care se referă la materialul uscat;

++ - valori care se referă la materialul aflat în echilibru cu atmosfera standard 23°C/50% umiditate relativă (date în literatura de specialitate).

Prelucrările pentru cercetarea experimentală s-a realizat în sala de mașini-unelte cu comandă numerică (MUCN) a Departamentului Ingineria Fabricației, Facultatea de Inginerie a Universității "Dunărea de Jos" din Galați, folosindu-se o mașină cu comandă numerică, EMCO MILL 55 CNC.

Parametrii regimului de lucru, pentru plăcile supuse testării, au fost stabiliți conform tabelului 5.11.

Nr. crt.	d [mm]	v _a [mm/min]	n [rot/min]	v _s [mm/rot]	Test nr.	Placă nr.
1	10	16	509,29	30	1	1
2	10	32	1018,62	30	1	2
3	10	16	509,29	75	1	3
4	10	32	1018,62	75	1	4
5	8	16	636,62	30	1	5
6	8	32	1273,24	30	1	6
7	8	16	636,62	75	1	7
8	8	32	1273,24	75	1	8

 Tabelul 5.11. Parametrii regimului de lucru

Testele s-au realizat în aceleași condiții de așchiere, fără modificarea tăișului transversal liniar al burghielor standard. Astfel, placa de dimensiuni $210 \times 62 \times 32$ mm a fost prinsă pe masa mașinii prin intermediul unor bride, figura 5.22.

Fig. 5.22. Sistemul de prindere a plăcii

2.8.1.3. Metodologia de cercetare

În vederea stabilirii preciziei cu care centrul de prelucrare CNC execută deplasările pe direcția axelor X și Y, s-au realizat încercări comparative, a burghielor cu tăișuri rectilinii standard. S-a convenit ca pentru prelucrarea plăcilor cu burghie de diametrul Ø8 mm, respectiv Ø10 mm, să se stabilească un plan de lucru, reprezentat generic în figura 5.23.

									210								
	C 1	C ₂	C₃	C 4	C 5	C ₆	C 7	C8	C 9	C 10	C 11	C12	C 13	C 14	C 15	C16	
.2	•5	• <u>12</u> 10	2 	•	•	٠	° 35	•40	•	•	•	•	•	•	•75	•80	1
- •	4	•9	•	•	•	٠	•34	•39	•	•	٠	•	•	•	•74	•79	
	•3	•8	•	٠	•	٠	•33	•38	•	٠	•	•	•	٠	•73	•78	62
	2	•7	•	•	•	•	•32	•37	•	•	•	•	•	٠	•72	•77	
NW		•6	•	•	•	•	•31	•36	•	•	•	•	•	•	•71	•76	_
	9																

Fig. 5.23. Alegerea originii maşinii CNC

În acest caz, s-a stabilit ca originea primei găuri să fie la o distanță de 9 mm față de colțul plăcii, pe direcția axelor +X și +Y ale mașinii CNC.

Înaintea prelucrării propriu-zise, s-a utilizat un burghiu de centruire cu diametrul de Ø8 mm în vederea realizării unei pre-găuriri. După centruirea celor 80 de găuri, s-au operat modificări în codul CNC, trecându-se la o nouă prelucrare (de la centruitor la burghiu de prelucrare). După burghiere, s-a făcut o trecere de curățare a celor 80 de găuri prelucrate.

Adâncimea de găurire, la burghierea materialelor cu cele două tipuri burghie, a fost de 15 mm. Aceste date preliminare, alături de specificațiile parametrilor regimului de așchiere, au constituit parte din codul G, transmis mașinii CNC. Codul G este prezentat în anexa 1.

Având în vedere că așchiile rezultate în urma prelucrării găurilor, nu se desprind automat de pe sculă, prelucrarea se va face pentru fiecare coloană a rețelei de găuri în parte, modificările aduse programului mașinii cu comandă numerică, fiind legate doar de schimbarea parametrilor X.

Fig. 5.24. Măsurarea rugozității: (1) Profilometrul Mitutoyo Surftest; (2) Poziționarea palpatorului

Măsurarea parametrilor ce definesc rugozitatea s-a realizat cu un rugozimetru, Mitutoyo Surftest SJ-210 (achiziționat în cadrul proiectului RU-TE 0031, etapa 2), palpatorul acestuia având posibilitatea să se deplaseze pe o lungime de maxim 5 mm, figura 5.24.

Măsurătorile au fost preluate cu produsul soft Surftest SJ Communication Tool, care a permis cuantificarea mai multor parametri de bază ai suprafeței plăcii de evaluat.

Etalonarea aparatului s-a realizat pe proba etalon, furnizată odată cu aparatul, având rugozitatea $R_a = 2,97 \mu m$.

În figura 5.25, se prezintă un exemplu de profilogramă pentru o prelucrare prin burghiere și valorile parametrilor evaluați [SR EN ISO 4287 : 2003].

Fig. 5.25. Profilogramă și parametri ai suprafeței evaluate

Tabelul 5.12. Valorile parametrilor afişaţi de programul

Work Name	Sample	Oprator	Mitutoyo
Measuring Tool	SurfTest	Comment	Ver2.00
Standard	ISO 1997	Ν	5
Profile	R	Cut-Off	0.8mm
Ra	2.970 µm		
Rq	1.487 µm		
Rz	8.518 μm		

Surftest SJ Communication Tool

Dintre parametrii care caracterizează micro-geometria suprafeței după direcția de măsurare, se ia în calcul doar parametrul de înălțime R_a [SR EN ISO 4287 : 2003].

2.8.1.4. Rezultate obținute și interpretarea măsurătorilor

În urma prelucrărilor prin burghiere a plăcii de dimensiuni 210×62×32 mm din PA6, POM C și PEHD 1000, utilizând drept scule așchietoare burghie elicoidale cu două tăișuri rectilinii, variind parametrii regimului de așchiere conform tabelului 5.11, după procesarea datelor înregistrate în Surftest SJ Communication Tool, mărimile obținute au fost grupate tabelar și în format grafic (detaliat, în anexa 2). Dat fiind faptul că există o multitudine de factori, care au o mai mare sau mai mică influență asupra rugozității (deformațiile plastice și elastice ale materialului, calitatea suprafeței părții tăietoare a sculei, inclusiv uzura ei, rigiditatea sistemului tehnologic elastic de prelucrare, lichidul de răcire-ungere etc.), din punctul de vedere al importanței tehnologice a acestora, în prezentul studiu, s-au ales cei referitori la regimul de așchiere (viteza de lucru și avansul), respectiv, turația sculei așchietoare.

În tabelul 5.13, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø8 mm, asupra plăcii din PA6, cu două tăișuri rectilinii, pentru n=636.62 rot/min și v_a=16 mm/min și v_s=30 min/rot.

PA6, diametrul 8 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	2,003	41	3,639			
2	2,024	42	3,587			
3	2,883	43	3,720			
	•••	•••				
	•••	•••				
60	4,893	78	2,851			
61	4,928	79	2,320			
62	3,173	80	3,039			

Tabelul 5.13. Valori pentru R_a - burghiu Ø8 mm, placă PA6

În tabelul 5.14, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø10 mm, asupra plăcii din PA6, cu două tăișuri rectilinii, pentru n=509.29 rot/min și v_a=16 mm/min și v_s=30 min/rot.

PA6, diametrul 10 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	1,058	41	3,343			
2	2,197	42	3,350			
3	3,300	43	3,490			
•••	•••					
60	6,167	78	4,525			
61	7,857	79	5,230			
62	5,931	80	2,440			

Tabelul 5.14. Valori pentru R_a - burghiu Ø10 mm, placă PA6

În tabelul 5.15, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø8 mm, asupra plăcii din POM C, cu două tăișuri rectilinii, pentru n=636.62 rot/min și v_a=16 mm/min și v_s=30 min/rot.

Tabelul 5.15. Valori pentru R_a - burghiu Ø8 mm, placă POM C

POM C, diametrul 8 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	0,574	41	0,991			
2	0,783	42	0,880			
3	0,947	43	0,836			
			•••			
	•••		•••			
60	0,659	78	0,673			
61	0,953	79	0,744			
62	0,738	80	0,476			

În tabelul 5.16, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø10 mm, asupra plăcii din POM C, cu două tăișuri rectilinii, pentru n=509.29 rot/min și v_a=16 mm/min și v_s=30 min/rot.

POM C, diametrul 10 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	0,672	41	0,668			
2	0,710	42	0,808			
3	0,599	43	0,497			
60	0,412	78	0,360			
61	0,459	79	0,518			
62	0,501	80	0,520			

Tabelul 5.16. Valori pentru R_a - burghiu Ø10 mm, placă POM C

În tabelul 5.17, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø8 mm, asupra plăcii din PEHD 1000, cu două tăișuri rectilinii, pentru n=636.62 rot/min și v_a=16 mm/min și v_s=30 min/rot.

PEHD 1000, diametrul 8 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	0,583	41	0,556			
2	0,345	42	0,708			
3	0,663	43	0,421			
60	0,612	78	0,422			
61	0,762	79	0,435			
62	0,996	80	0,567			

Tabelul 5.17. Valori pentru R_a - burghiu Ø8 mm, placă PEHD 1000

În tabelul 5.18, se regăsesc valorile înregistrate pentru parametrul de rugozitate R_a , la prelucrarea cu burghiul cu diametrul de Ø10 mm, asupra plăcii din PEHD 1000, cu două tăișuri rectilinii, pentru n=509.29 rot/min și v_a=16 mm/min și v_s=30 min/rot.

Tabelul 5.18. Valori pentru R_a - burghiu Ø10 mm, placă PEHD 1000

PEHD 1000, diametrul 10 mm						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	0,627	41	1,433			
2	0,457	42	0,654			
3	0,571	43	0,693			
60	0,526	78	0,500			
61	0,503	79	0,638			
62	0,607	80	0,557			

În figurile 5.26÷5.30 sunt prezentate în format grafic, valorile celor 80 de găuri prelucrate cu burghie de diametre diferite, pentru plăcile din PA6, POM C și PEHD 1000.

Fig. 5.26. *Reprezentarea grafică a rugozității găurilor din placa de PA6, prelucrate cu burghiul de Ø8 mm*

Fig. 5.27. Reprezentarea grafică a rugozității găurilor din placa de PA6, prelucrate cu burghiul de Ø10 mm

Fig. 5.28. Reprezentarea grafică a rugozității găurilor din placa de POM C, prelucrate cu burghiul de Ø8 mm

Fig. 5.29 Reprezentarea grafică a rugozității găurilor din placa de POM C, prelucrate cu burghiul de Ø10 mm

Fig. 5.29 Reprezentarea grafică a rugozității găurilor din placa de PEHD 1000, prelucrate cu burghiul de Ø8 mm

Fig. 5.30. Reprezentarea grafică a rugozității găurilor din placa de PEHD 1000, prelucrate cu burghiul de Ø10 mm

În figurile 2.19 și 2.20 sunt prezentate, comparativ, diagramele și mărimile parametrului de rugozitate (R_a), pentru diametrele de Ø8 și Ø10 mm ale burghielor, care au prelucrat plăcile din PA6, POM C și PEHD 1000.

Fig. 5.31. Variația rugozității Ra, pentru POM C, PA6 și PEHD 1000 - Ø10

Fig. 5.32. Variația rugozității Ra, pentru POM C, PA6 și PEHD 1000 – Ø8

2.8.2. Concluzii

Experimentele realizate pentru cele 24 plăci din PA6, POM C și PEHD 1000, cu 2 burghie de diametre diferite, cu aceleași viteze de avans și de așchiere și 2 mărimi ale turației de lucru, au permis evidențierea următoarelor concluzii:

- Mărimea diametrului burghiului este un factor semnificativ pentru plăci, pentru dimensiunile de burghie utilizate în experiment; cu alte cuvinte, cu cât diametrul burghiului este mai mare, cu atât valoarea rugozității suprafețelor prelucrate este mai ridicată.

- Din punct de vedere a unor valori optime ale rugozității, dintre cele trei materiale polimerice, comportamentul cel mai bun l-a avut materialul POM C, raportat la caracteristicile mecanice și din observațiile din timpul prelucrării privind modul de detașare al așchiei.

- În ceea ce privește variația vitezei de avans, s-a putut observa că valoarea rugozității scade, pentru fiecare material în parte, cu cât valoarea vitezei de avans crește.

Anexa 1

a. Centruire

G54 TRANS X-80 Y-62 Z12.2 T8 D1 M6 S2000 M3 F200 G0 X9 Y7 Z10 MCALL CYCLE81 (5,0,2,-7,0) CYCLE801 (9,7,0,12,12,16,5) MCALL G0 Z100 M30

b. Burghiere

- coloana 1: G54

TRANS X-80 Y-62 Z12.2 T2 D1 M6 S636.62 M3 F30 G0 X9 Y7 Z5 MCALL CYCLE81 (5,0,2,-15,0) HOLES1 (9,0,90,7,12,5) MCALL G0 Z30 M30

c. Trecere de curățare

G54 TRANS X-80 Y-62 Z12.2 T2 D1 M6 S1000 M3 F400 G0 X9 Y7 Z5 MCALL CYCLE81 (3,0,2,-14,0) CYCLE801 (9,7,0,12,12,16,5) MCALL G0 Z100 M30

Anexa 2

1. $PA6 - d=10 \text{ mm}, n=509,29 \text{ rot/min}, v_s=30 \text{ mm/rot}$						
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]			
1	1,058	41	3,343			
2	2,197	42	3,350			
3	3,300	43	3,490			
4	3,560	44	6,756			
5	3,412	45	5,695			
6	3,711	46	4,346			
7	3,679	47	4,957			
8	2,906	48	4,629			
9	3,228	49	6,052			
10	3,104	<u> </u>	4,995			
11	3,002	52	<u> </u>			
12	4,230	53	3,817			
13	3 044	54	6 507			
15	4,119	55	4,949			
16	3.587	56	8.431			
17	3.546	57	4,666			
18	2,724	58	4.226			
19	2.744	59	4.035			
20	2,795	60	6,167			
21	3.584	61	7.857			
22	4,354	62	5,931			
23	4,312	63	5,695			
24	5,044	64	4,667			
25	5,765	65	4,329			
26	6,138	66	5,265			
27	4,774	67	3,821			
28	3,743	68	4,955			
29	3,589	69	6,038			
30	3,911	70	5,327			
31	6,192	71	5,856			
32	2,464	72	5,774			
33	2,957	73	4,317			
34	3,286	74	3,984			
35	1,865	75	5,292			
36	4,249	76	4,489			
37	3,339	77	5,858			
38	3,308	78	4,525			
39	3,915	79	5,230			
40	5,396	80	2,440			

Mărimile obținute ale rugozităților grupate tabelar și în format grafic

2. PA6 – d=10 mm, n=1018,62 rot/min, v _s =30 mm/rot							
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]				
1	4,745	41	8,912				
2	4,329	42	9,156				
3	3,107	43	10,509				
4	3,682	44	11,328				
5	3,382	45	11,643				
6	3,157	46	12,988				
7	4,923	47	12,531				
8	3,096	48	15,356				
9	4,885	49	6,981				
10	5,878	50	4,801				
11	4,445	51	5,372				
12	6,615	52	6,281				
13	8,898	53	7,498				
14	13,525	54	5,899				
15	15,187	55	6,449				
16	16,094	56	8,299				
17	6,809	57	9,101				
18	7,559	58	9,858				
19	5,774	59	10,225				
20	6,987	60	11,783				
21	5,161	61	13,561				
22	8,742	62	13,841				
23	8,450	63	15,988				
24	9,213	64	17,515				
25	15,210	65	6,767				
26	14,695	66	5,988				
27	15,672	67	4,271				
28	17,238	68	6,819				
29	10,864	69	7,336				
30	7,078	70	8,199				
31	8,218	71	8,513				
32	16,089	72	9,707				
33	4,386	73	10,856				
34	4,759	74	11,703				
35	5,721	75	12,562				
36	6,031	76	12,778				
37	5,941	77	15,901				
38	7,511	78	16,603				
39	6,994	79	15,944				
40	7,977	80	16,357				

3. PA6 – d=10 mm, n=509,29 rot/min, v _s =75 mm/rot							
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]				
1	3,390	41	3,689				
2	3,515	42	2,982				
3	3,922	43	3,473				
4	2,087	44	3,979				
5	2,473	45	2,484				
6	2,931	46	3,287				
7	2,070	47	2,340				
8	2,623	48	3,715				
9	2,455	49	3,598				
10	2,809	50	2,770				
11	3,065	51	3,939				
12	3,352	52	3,720				
13	3,426	53	3,304				
14	3,658	54	3,499				
15	3,598	55	3,703				
16	3,765	56	3,376				
17	3,910	57	3,878				
18	3,361	58	3,676				
19	3,915	59	3,302				
20	3,615	60	3,782				
21	3,154	61	3,322				
22	3,315	62	3,209				
23	3,668	63	2,240				
24	3,674	64	2,840				
25	3,732	65	2,991				
26	3,146	66	3,562				
27	3,583	67	3,619				
28	3,270	68	3,815				
29	3,266	69	3,523				
30	2.570	70	3.484				
31	2.061	71	3.275				
32	3.412	72	3.159				
33	3.977	73	2.612				
34	3.556	74	3.669				
35	3.845	75	2.472				
36	3.657	76	2.082				
37	3.680	77	3.333				
38	2,923	78	3,288				
39	2.798	79	2.326				
40	3,841	80	2,297				

4. PA6 – d=10 mm, n=1018,62 rot/min, v _s =75 mm/rot							
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]				
1	2,476	41	9,978				
2	3,125	42	10,024				
3	3,986	43	11,295				
4	3,873	44	9,129				
5	3,315	45	7,773				
6	2,906	46	8,932				
7	3,787	47	9,741				
8	2,818	48	11,505				
9	3,974	49	8,994				
10	3,873	50	10,224				
11	3,495	51	11,617				
12	3,738	52	6,930				
13	3,805	53	10,078				
14	4,055	54	9,324				
15	4,328	55	10,338				
16	4,931	56	7,571				
17	4.140	57	8.910				
18	5.438	58	6.981				
19	4.547	59	7.573				
20	3.770	60	6.994				
21	5,431	61	5,673				
22	5,796	62	7,910				
23	5,659	63	5,172				
24	5,785	64	7,040				
25	4,938	65	8,077				
26	4,875	66	7,782				
27	5,693	67	10,682				
28	3,898	68	5,042				
29	4,285	69	8,822				
30	4,391	70	7,217				
31	4,523	71	7,946				
32	5,486	72	9,712				
33	3,959	73	5,473				
34	4,075	74	11,927				
35	6,798	75	7,910				
36	7,189	76	5,637				
37	7,590	77	8,102				
38	8,200	78	4,339				
39	8,878	79	7,323				
40	9,785	80	8,242				
5. PA6 – d=8 mm, n=636,62 rot/min, v _s =30 mm/rot							
--	---------	-------------	---------				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]				
1	2,003	41	3,639				
2	2,024	42	3,587				
3	2,883	43	3,720				
4	2,152	44	4,240				
5	2,125	45	4,122				
6	2,873	46	3,910				
7	2,292	47	4,617				
8	2,711	48	2,865				
9	2,214	49	3,734				
10	2,527	50	2,212				
11	2,548	51	2,345				
12	2,793	52	3,098				
13	2,467	53	2,801				
14	2,609	54	3,311				
15	2,556	55	2,970				
16	3,489	56	3,175				
17	1,569	57	2,610				
18	1,954	58	3,038				
19	2,234	59	3,905				
20	3,553	60	4,893				
21	3,313	61	4,928				
22	3,803	62	3,173				
23	1,762	63	3,167				
24	3,537	64	4,865				
25	3,443	65	1,661				
26	3,128	66	2,337				
27	3,934	67	2,130				
28	3,787	68	2,232				
29	4,147	69	2,288				
30	4,635	70	1,906				
31	3,298	71	2,331				
32	4,426	72	2,206				
33	4,397	73	1,585				
34	2,192	74	1,999				
35	1,643	75	2,973				
36	3,580	76	2,812				
37	4,829	77	2,137				
38	2,572	78	2,851				
39	2,828	79	2,320				
40	2,828	80	3,039				

6.	6. PA6 – d=8 mm, n=1273,24 rot/min, v _s =30 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	4,199	41	11,349	
2	3,384	42	11,444	
3	4,445	43	11,580	
4	5,022	44	16,933	
5	4,388	45	13,841	
6	7,139	46	13,130	
7	8,223	47	13,007	
8	7,843	48	12,809	
9	9,317	49	9,739	
10	10,614	50	9,127	
11	8,353	51	10,735	
12	9,133	52	8,589	
13	8,863	53	10,922	
14	8,463	54	11,642	
15	10,490	55	12,931	
16	11,197	56	10,929	
17	6.672	57	11.369	
18	9,245	58	13,467	
19	11.083	59	13.035	
20	8.156	60	14.245	
21	9,031	61	13,895	
22	8,284	62	11,250	
23	11,933	63	11,685	
24	12.071	64	12.263	
25	9.575	65	5,580	
26	9,888	66	4.093	
27	11.605	67	5.642	
28	12,844	68	11.002	
29	11.634	69	10.636	
30	12 379	70	10,751	
31	13 924	71	13 207	
32	11 045	72	11.085	
32	6 329	72	10 302	
33	9 792	73	10,302	
35	9 561	75	13 477	
35	8 777	76	10 317	
27	10.220	70	<u> </u>	
3/ 20	10,220 9 005	// 70	0,130	
	0,905	/ð 70	0.051	
<u> </u>	12 161	17 80	12 636	
-10	12,101	00	12,050	

7. PA6 – d=8 mm, n=636,62 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	1,999	41	3,537
2	2,908	42	2,499
3	1,553	43	2,548
4	2,080	44	2,620
5	2,558	45	2,729
6	1,891	46	3,168
7	1,411	47	3,747
8	2,444	48	2,953
9	1,948	49	3,175
10	2,225	50	2,891
11	3,078	51	3,236
12	3,441	52	3,528
13	1,586	53	2,455
14	2,549	54	3,261
15	2,691	55	1,998
16	1,986	56	2,148
17	1.807	57	2,575
18	2.527	58	3.121
19	2.241	59	2.588
20	2.249	60	3.257
21	2,238	61	3,728
22	2.168	62	3.981
23	2,188	63	2,787
24	2.649	64	2.658
25	2,720	65	2,878
26	2,450	66	3.951
27	3,751	67	3,695
28	2.242	68	3,701
29	1.863	69	3.295
30	2.492	70	3,102
31	1.539	71	2.713
32	2,908	72	2.872
33	1 972	73	2,072
34	3 275	73	3 230
35	2,613	75	2,090
36	2,513	76	1 771
30	2,515	70	2 565
28	2,755	78	1 700
30	2,009	70	2 258
40	3.120	80	3.067
••	2,120		2,307

8.	8. PA6 – d=8 mm, n=1273,24 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	4,602	41	9,062	
2	3,033	42	9,495	
3	4,225	43	11,041	
4	6,908	44	9,985	
5	6,663	45	11,605	
6	7,098	46	10,178	
7	5,497	47	9,341	
8	7,426	48	9,385	
9	5,657	49	9,247	
10	7,003	50	10,352	
11	7,562	51	9,881	
12	5,562	52	9,112	
13	7,731	53	10,692	
14	7,886	54	7,627	
15	6,804	55	7,102	
16	5,165	56	7,504	
17	9,320	57	9,169	
18	7,726	58	4,930	
19	8,327	59	8,112	
20	7,570	60	5,858	
21	9,722	61	8,715	
22	8,008	62	5,709	
23	10,578	63	8,424	
24	9,339	64	7,633	
25	8,373	65	7,454	
26	8,236	66	7,941	
27	10,152	67	11,291	
28	9,932	68	5,799	
29	7,853	69	8,282	
30	8,837	70	11,510	
31	6,445	71	11,751	
32	7,283	72	9,169	
33	7,822	73	8,426	
34	7,752	74	10,001	
35	6,885	75	9,069	
36	9.148	76	11.864	
37	9,229	77	8,819	
38	9,510	78	5,266	
39	8,353	79	3,789	
40	11,752	80	7,948	

9. F	9. POM C – d=10 mm, n=509,29 rot/min, v _s =30 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,672	41	0,668	
2	0,710	42	0,808	
3	0,599	43	0,497	
4	0,855	44	0,501	
5	0,355	45	0,638	
6	0,987	46	0,519	
7	0,704	47	0,689	
8	0,912	48	0,455	
9	0,518	49	0,981	
10	0,515	50	0,848	
11	0,519	51	0,811	
12	0,598	52	0,910	
13	0,726	53	0,874	
14	0,726	54	0,798	
15	0.638	55	0.929	
16	0.529	56	0.825	
17	0.669	57	0.620	
18	0.996	58	0.571	
19	0.876	59	0.553	
20	0.825	60	0.412	
21	0.951	61	0.459	
22	0.900	62	0.501	
23	0.949	63	0.809	
24	0.771	64	0.888	
25	0.748	65	0.908	
26	0.620	66	0.899	
27	0.893	67	0.903	
28	0.464	68	0.477	
29	0.652	69	0.725	
30	0.501	70	0.793	
31	0.739	71	0.796	
32	0.708	72	0.447	
33	0.941	73	0.481	
34	0.812	74	0.403	
35	0.805	75	0.666	
36	0.847	76	0 469	
37	0,619	77	0,508	
38	0 744	78	0,360	
39	0.905	79	0.518	
40	0,957	80	0,520	

10. POM C – d=10 mm, n=1018,62 rot/min, v _s =30 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	0,732	41	1,976
2	1,104	42	1,901
3	1,701	43	1,837
4	1,681	44	1,986
5	1,594	45	1,700
6	0,546	46	1,463
7	1,526	47	1,136
8	0,758	48	1,865
9	0,427	49	1,153
10	0,926	50	1,934
11	0,507	51	0,871
12	0,384	52	1,630
13	0,588	53	1,971
14	0,405	54	1,979
15	1,962	55	1,567
16	1,059	56	1,670
17	0,754	57	1,941
18	0,538	58	1,845
19	1,871	59	1,741
20	0,369	60	1,978
21	1,676	61	1,998
22	1,831	62	1,862
23	0,945	63	1,807
24	1,401	64	1,765
25	1,881	65	1,753
26	1,856	66	1,972
27	1,957	67	1,786
28	0,933	68	1,960
29	1,807	69	1,735
30	1,141	70	1,532
31	1,796	71	1,970
32	1,598	72	1,856
33	0,485	73	1,994
34	0,723	74	1,793
35	0,449	75	1,671
36	0,516	76	1,611
37	1,859	77	1,986
38	1,850	78	1,300
39	1,980	79	1,012
40	1,406	80	0,902

11. POM C – d=10 mm, n=509,29 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	1,167	41	1,336
2	0,962	42	0,799
3	0,792	43	0,820
4	0,976	44	0,741
5	0,812	45	1,237
6	0,724	46	1,143
7	0,731	47	1,166
8	0,676	48	1,139
9	0,794	49	0,840
10	0,770	50	0,960
11	0,801	51	0,979
12	0,833	52	1,242
13	0,835	53	1,037
14	0,845	54	1,099
15	0,942	55	1,265
16	1,021	56	0,939
17	0,880	57	1,567
18	0,682	58	1,642
19	1,017	59	1,432
20	0,942	60	1,139
21	1,104	61	1,226
22	1,120	62	1,008
23	1,098	63	1,123
24	1,054	64	1,768
25	0,948	65	1,136
26	1,181	66	0,873
27	1,035	67	1,070
28	0,701	68	1,238
29	0,735	69	0,984
30	1,005	70	1,282
31	0,856	71	1,083
32	1,635	72	1,158
33	1,334	73	1,064
34	1,073	74	0,901
35	0,983	75	1,053
36	0,967	76	1,051
37	1,138	77	0,995
38	0,863	78	0,872
39	1,682	79	0,860
40	1,200	80	1,027

12. POM C – d=10 mm, n=1018,62 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	1,786	41	1,494
2	0,941	42	1,631
3	1,003	43	1,181
4	0,780	44	1,226
5	0,901	45	1,584
6	0,479	46	1,371
7	0,372	47	1,520
8	0,392	48	1,150
9	0,910	49	0,876
10	0,318	50	1,677
11	0,570	51	1,555
12	0,812	52	1,549
13	0,426	53	1,680
14	0,562	54	1,276
15	0,844	55	1,188
16	0,967	56	0,976
17	0,520	57	1,312
18	1,633	58	1,121
19	1,475	59	1,255
20	1,294	60	0,829
21	1,458	61	1,438
22	1,321	62	1,420
23	1,297	63	1,537
24	1,129	64	1,156
25	1,310	65	0,830
26	1,221	66	1,389
27	1,148	67	1,648
28	1,238	68	1,278
29	1,204	69	1,282
30	1,045	70	1,699
31	1,133	71	1,376
32	0,777	72	1,275
33	1,329	73	1,216
34	1,748	74	1,055
35	1,534	75	1,009
36	1,243	76	1,111
37	1,405	77	0,778
38	1,446	78	1,154
39	1,462	79	0,713
40	1,531	80	1,019

13. POM C – d=8 mm, n=636,62 rot/min, v _s =30 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	0,574	41	0,991
2	0,783	42	0,880
3	0,947	43	0,836
4	0,762	44	0,471
5	0,686	45	0,735
6	0,961	46	0,865
7	0,884	47	0,420
8	0,560	48	0,133
9	0,573	49	0,879
10	0,801	50	0,902
11	0,806	51	0,808
12	0,447	52	0,956
13	0,525	53	0,524
14	0,691	54	0,759
15	0,719	55	0,827
16	0,435	56	0,751
17	0,960	57	0,968
18	0,840	58	0,762
19	0,713	59	0,892
20	0,817	60	0,659
21	0,710	61	0,953
22	0,994	62	0,738
23	0,950	63	0,660
24	0,725	64	0,739
25	0,905	65	0,897
26	0,909	66	0,594
27	0,896	67	0,749
28	0,546	68	0,722
29	0,998	69	0,697
30	0,782	70	0,604
31	0,991	71	0,616
32	0,818	72	0,696
33	0,539	73	0,653
34	0,959	74	0,500
35	0,739	75	0,551
36	0,985	76	0,566
37	0,822	77	0,596
38	0,741	78	0,673
39	0,649	79	0,744
40	0,827	80	0,476

14.]	14. POM C – d=8 mm, n=1273,24 rot/min, v _s =30 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,585	41	1,269	
2	0,722	42	0,899	
3	0,421	43	1,480	
4	0,457	44	1,243	
5	0,458	45	0,852	
6	0,522	46	1,572	
7	0,411	47	0,805	
8	0,369	48	0,893	
9	0,750	49	1,966	
10	0,412	50	1,922	
11	0,414	51	0,970	
12	0,450	52	1,008	
13	0,493	53	1,500	
14	0,405	54	1,890	
15	0,578	55	1,361	
16	0,427	56	1,138	
17	0,765	57	1,143	
18	0,532	58	1,130	
19	0,695	59	1,593	
20	1,044	60	1,021	
21	0,863	61	0,971	
22	0,743	62	1,666	
23	0,978	63	1,042	
24	0,612	64	1,338	
25	1,028	65	1,984	
26	0,431	66	1,913	
27	0,808	67	1,599	
28	1,456	68	1,642	
29	0,521	69	1,003	
30	0,625	70	1,256	
31	0,600	71	1,537	
32	0,534	72	1,052	
33	0,796	73	0,910	
34	1,496	74	0,886	
35	1,518	75	0,965	
36	0,578	76	1,299	
37	0,646	77	1,043	
38	1,042	78	0,837	
39	0,963	79	1,857	
40	1,428	80	1,411	

15. POM C – d=8 mm, n=636,62 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]
1	0,364	41	0,455
2	0,393	42	0,729
3	0,338	43	0,400
4	0,336	44	0,417
5	0,368	45	0,384
6	0,358	46	0,434
7	0,323	47	0,448
8	0,328	48	0,407
9	0,324	49	0,379
10	0,352	50	0,375
11	0,392	51	0,482
12	0,601	52	0,550
13	0,328	53	0,408
14	0,369	54	0,366
15	0,330	55	0,649
16	0,368	56	0,895
17	0,740	57	0,504
18	0,534	58	0,508
19	0,979	59	0,468
20	0,595	60	0,509
21	0,483	61	0,401
22	0,501	62	0,649
23	0,523	63	0,349
24	0,809	64	0,392
25	0,567	65	0,412
26	0,550	66	0,415
27	0,484	67	0,368
28	0,464	68	0,290
29	0,364	69	0,358
30	0,504	70	0,403
31	0,436	71	0,378
32	0,532	72	0,394
33	0,409	73	0,455
34	0,407	74	0,364
35	0,503	75	0,509
36	0,708	76	0,433
37	0,358	77	0,394
38	0,435	78	0,393
39	0,394	79	0,274
40	0,555	80	0,425

16.]	16. POM C – d=8 mm, n=1273,24 rot/min, v _s =75 mm/rot			
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,465	41	1,972	
2	1,107	42	1,793	
3	0,510	43	1,639	
4	0,623	44	1,584	
5	0,762	45	1,563	
6	1,171	46	1,798	
7	0,431	47	1,720	
8	0,597	48	1,427	
9	0,399	49	1,221	
10	0,681	50	1,789	
11	0,652	51	1,816	
12	1,188	52	1,426	
13	1,093	53	1,801	
14	1,152	54	1,945	
15	0.825	55	1,186	
16	0.407	56	1,954	
10	1 211	57	1,784	
18	1 229	58	1 674	
10	1 324	59	1 419	
20	1,051	60	1,115	
20	1 538	61	1,919	
21	1,358	62	1,510	
22	0.446	63	1,007	
25	1 513	64	1,022	
24	1,313	65	1,420	
25	1,327	03	1,391	
20	1,207	00	1,704	
21	1,091	07	0,924	
28	1,709	<u> </u>	1,300	
29	1,794	69	0,778	
30	1,793	70	1,010	
31	0,897	71	0,750	
32	0,994	72	1,152	
33	1,442	73	0,896	
34	1,684	74	0,987	
35	0,916	75	0,707	
36	1,276	76	0,923	
37	1,252	77	0,842	
38	1,926	78	0,962	
39	1,206	79	1,173	
40	1,859	80	1,288	

17. PEHD 1000 C – d=10 mm, n=509,29 rot/min, v _s =30 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,627	41	1,433	
2	0,457	42	0,654	
3	0,571	43	0,693	
4	0,391	44	0,962	
5	0,595	45	0,621	
6	0,469	46	0,837	
7	2,914	47	0,364	
8	2,296	48	0,945	
9	2,322	49	0,656	
10	2,484	50	0,694	
11	2,171	51	0,598	
12	1,210	52	0,500	
13	0,908	53	0,589	
14	0,918	54	0,558	
15	1,374	55	0,644	
16	0,732	56	0,986	
17	2.063	57	0.780	
18	1.430	58	1.234	
19	1.498	59	1.139	
20	0.855	60	0.526	
21	1,025	61	0,503	
22	2,192	62	0,607	
23	1,204	63	0,434	
24	1,412	64	0,583	
25	1,591	65	1,785	
26	2,207	66	1,776	
27	1,846	67	0,683	
28	1,464	68	0,516	
29	1,393	69	1,028	
30	1,401	70	0,794	
31	0,639	71	0,758	
32	0,569	72	0,517	
33	2,263	73	0,665	
34	2,140	74	0,581	
35	1,666	75	0,728	
36	0,715	76	0,646	
37	0,948	77	0,573	
38	1,826	78	0,500	
39	0,868	79	0,638	
40	1,922	80	0,557	

18. PEHD 1000 – d=10 mm, n=1018,62 rot/min, v _s =30 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	2,836	41	2,574	
2	1,737	42	2,985	
3	2,049	43	2,384	
4	2,123	44	2,477	
5	1,143	45	1,534	
6	2,751	46	2,777	
7	1,658	47	2,288	
8	2,009	48	2,296	
9	1,625	49	2,744	
10	2,013	50	1,578	
11	2,349	51	2,098	
12	2,170	52	1,132	
13	2,385	53	1,090	
14	1,939	54	2,309	
15	2,030	55	2,020	
16	1,436	56	2,879	
17	2,167	57	2,255	
18	2,359	58	1,398	
19	2,250	59	2,990	
20	1,429	60	2,507	
21	2,119	61	2,181	
22	2,475	62	2,700	
23	2,699	63	2,763	
24	2,617	64	2,596	
25	2,511	65	1,266	
26	2,897	66	1,051	
27	2,352	67	1,821	
28	2,301	68	1,034	
29	1,963	69	1,214	
30	2,814	70	1,499	
31	2,443	71	1,887	
32	1,319	72	1,965	
33	2,082	73	1,011	
34	2,757	74	1,140	
35	2,321	75	1,824	
36	1,921	76	2,599	
37	1,930	77	1,553	
38	1,807	78	1,093	
39	1,969	79	1,204	
40	2,742	80	2,990	

19. PEHD 1000 – d=10 mm, n=509,29 rot/min, v _s =75 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	1,080	41	0,666	
2	0,940	42	0,814	
3	0,968	43	0,797	
4	0,848	44	0,993	
5	0,852	45	0,757	
6	1,313	46	0,704	
7	0,661	47	0,690	
8	0,935	48	0,535	
9	1,137	49	0,938	
10	1,106	50	0,941	
11	1,099	51	0,803	
12	0,974	52	1,038	
13	1,807	53	0,820	
14	0,843	54	1,081	
15	0,789	55	0,780	
16	1,151	56	1,047	
17	0,824	57	0,597	
18	0,977	58	0,815	
19	0,808	59	0,905	
20	0,868	60	0,770	
21	0,745	61	0,869	
22	0,781	62	0,569	
23	0,770	63	0,591	
24	0,981	64	0,163	
25	1,095	65	1,148	
26	0,977	66	0,937	
27	0,778	67	0,844	
28	0,841	68	0,639	
29	0,760	69	1,063	
30	0,628	70	0,764	
31	0,612	71	0,886	
32	0,674	72	0,682	
33	1,031	73	0,743	
34	0,764	74	1,112	
35	0,900	75	1,025	
36	0,835	76	0,897	
37	0,757	77	1,020	
38	0,861	78	0,571	
39	0,733	79	0,667	
40	0,739	80	0,428	

20. PEHD 1000 – d=10 mm, n=1018,62 rot/min, v _s =75 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	1,295	41	1,245	
2	0,889	42	1,236	
3	0,955	43	1,286	
4	0,727	44	1,980	
5	0,633	45	1,113	
6	0,962	46	1,887	
7	0,755	47	1,119	
8	1,310	48	1,635	
9	0,483	49	1,535	
10	1,093	50	0,899	
11	1,175	51	0,916	
12	1,292	52	1,001	
13	0,657	53	0,918	
14	0,819	54	0,626	
15	0,818	55	1,378	
16	0,973	56	1,747	
17	1,503	57	1,332	
18	1,960	58	1,076	
19	1,257	59	1,571	
20	1,115	60	0,954	
21	1,008	61	1,158	
22	1,017	62	0,702	
23	1,429	63	1,010	
24	1,825	64	1,506	
25	1,493	65	0,640	
26	0,733	66	1,399	
27	0,968	67	1,538	
28	0,783	68	0,776	
29	1,817	69	1,077	
30	1,154	70	1,030	
31	1,518	71	1,663	
32	1,422	72	0,978	
33	1.846	73	0.526	
34	1,937	74	1,007	
35	1,171	75	1,254	
36	0,906	76	0,895	
37	0.818	77	1.217	
38	1.539	78	0.898	
39	1,629	79	0,651	
40	0,902	80	0,855	

21. PEHD 1000 – d=8 mm, n=636,62 rot/min, v _s =30 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,583	41	0,556	
2	0,345	42	0,708	
3	0,663	43	0,421	
4	0,935	44	0,939	
5	0,942	45	0,720	
6	0,920	46	0,647	
7	0,541	47	0,770	
8	0,418	48	0,970	
9	0,942	49	0,457	
10	0,742	50	0,530	
11	0,797	51	0,797	
12	0,291	52	0,501	
13	0,602	53	0,970	
14	0,578	54	0,455	
15	0,810	55	0,893	
16	0,572	56	0,898	
17	0,520	57	0,624	
18	0,530	58	0,714	
19	0,592	59	0,691	
20	0,656	60	0,612	
21	0,673	61	0,762	
22	0,431	62	0,996	
23	0,666	63	0,932	
24	0,721	64	0,512	
25	0,567	65	0,349	
26	0,733	66	0,446	
27	0,791	67	0,402	
28	0,802	68	0,640	
29	0,825	69	0,527	
30	0,693	70	0,698	
31	0,998	71	0,656	
32	0,629	72	0,923	
33	0,651	73	0,540	
34	0,766	74	0,786	
35	0,344	75	0,930	
36	0,631	76	0,631	
37	0,902	77	0,947	
38	0.787	78	0.422	
39	0,973	79	0,435	
40	0,719	80	0,567	

22. PEHD 1000 – d=8 mm, n=1273,24 rot/min, v _s =30 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,936	41	2,045	
2	1,469	42	3,659	
3	1,503	43	3,568	
4	0,898	44	3,656	
5	1,227	45	2,985	
6	1,522	46	3,898	
7	1,241	47	1,665	
8	1,298	48	1,689	
9	1,014	49	2,342	
10	0,581	50	1,044	
11	0,999	51	2,021	
12	1,719	52	1,353	
13	1,356	53	3,348	
14	1,930	54	3,608	
15	1,793	55	1,645	
16	1.989	56	3.875	
17	1.705	57	3.530	
18	1.985	58	3.280	
19	1.337	59	1.622	
20	1.630	60	2.924	
21	1,640	61	3,963	
22	1,916	62	1,311	
23	1,662	63	2,178	
24	2,268	64	1,755	
25	2,091	65	0,787	
26	2,897	66	0,578	
27	2,451	67	1,567	
28	2,925	68	1,014	
29	3,146	69	0,881	
30	3,821	70	1,097	
31	3,067	71	1,272	
32	0,815	72	0,662	
33	0,765	73	0,762	
34	0,854	74	1,108	
35	1,369	75	0,666	
36	3,655	76	0,903	
37	3,303	77	0,634	
38	1,697	78	0,929	
39	2,425	79	0,693	
40	3,195	80	0,818	

23. PEHD 1000 – d=8 mm, n=636,62 rot/min, v _s =75 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,865	41	0,438	
2	0,671	42	0,492	
3	0,644	43	0,598	
4	0,586	44	0,886	
5	0,952	45	0,565	
6	0,767	46	0,530	
7	0,998	47	0,565	
8	0,928	48	0,428	
9	0,647	49	0,538	
10	0,492	50	0,711	
11	0,423	51	0,478	
12	0,526	52	0,574	
13	0,663	53	0,507	
14	0,439	54	0,555	
15	0,527	55	0,585	
16	0,435	56	0,521	
17	0,560	57	0,484	
18	0,450	58	0,483	
19	0,580	59	0,739	
20	0,515	60	0,537	
21	0,809	61	0,597	
22	0,451	62	0,701	
23	0,525	63	0,534	
24	0,599	64	0,703	
25	0,414	65	0,546	
26	0,405	66	0,571	
27	0,475	67	0,440	
28	0,419	68	0,638	
29	0,646	69	0,566	
30	0,895	70	0,837	
31	0,685	71	0,543	
32	0,367	72	0,538	
33	0.565	73	0.632	
34	0.782	74	0.515	
35	0.498	75	0.620	
36	0,499	76	0,462	
37	0.613	77	0.611	
38	0.656	78	0.426	
39	0,476	79	0,387	
40	0,524	80	0,624	

24. PEHD 1000 – d=8 mm, n=1273,24 rot/min, v _s =75 mm/rot				
Număr găuri	Ra [µm]	Număr găuri	Ra [µm]	
1	0,638	41	2,793	
2	0,812	42	1,774	
3	0,997	43	1,301	
4	0,735	44	1,701	
5	0,544	45	1,691	
6	0,660	46	1,537	
7	0,531	47	1,075	
8	0,731	48	0,648	
9	0,422	49	1,372	
10	0,879	50	1,883	
11	1,042	51	1,770	
12	0,416	52	1,212	
13	0,932	53	1,239	
14	1,025	54	1,065	
15	0.679	55	1,596	
16	0.774	56	1.745	
17	0.547	57	1.995	
18	1.915	58	1.642	
10	2,210	59	1 888	
20	1.640	60	1,968	
21	1.559	61	0.868	
22	2,305	62	1 368	
23	1 225	63	1 178	
20	1 547	64	0.952	
25	1 363	65	0.747	
25	2 567	66	1 500	
20	0.968	67	0.756	
27	2 120	68	1 320	
20	1.021	60	2.038	
29	1,021	70	2,038	
30	1,380	70	2,202	
31	1,849	/1	1,240	
32	0,875	72	2,045	
35	0,494	13	1,486	
34	1,315	74	1,925	
35	1,084	75	0,963	
36	1,628	76	1,162	
31	2,277	77	0,/11	
	2 106	/ð 70	0.506	
40	2,328	80	0,572	

Bibliografie

[1] Litvin F. L., *Theory of Gearing. Reference Publication*, 1212, NASA, Scientific and Technical Information Division, Washington D.C., 1984.

[2] Radzevich, S., Kinematic Geometry of Surface Machining, CRC Press, 2008, ISBN 978-1-4200-6340-0.

[3] Oancea, N., *Generarea suprafețelor prin înfășurare (Surfaces generation by winding)*, Vol. I-III, Galati University Press, 2004, ISBN 973-627-170-4, ISBN 973-627-107-2 (vol. I), ISBN 973-627-176-6 (vol II), ISBN 973-627-239-7 (vol III).

[4] Berbinschi S. Teodor, V., Oancea, N., *3D Graphical Method for Profiling Tools that Generate Helical Surfaces*, The International Journal of Advanced Manufacturing Technology, DOI: 10.1007/s00170-011-3637-3, vol. 60, p. 505-512, 2012.

[5] Berbinschi S. Teodor, V., Oancea, N., *3D Graphical Method for Profiling Gear Hob Tools*, The International Journal of Advanced Manufacturing Technology, DOI: 10.1007/s00170-12-3989-3.

[6] Baroiu, N., Teodor, V., Oancea, N., *A new form of plane trajectories theorem. Generation with rotary cutters*, Buletinul Institutlui Politehnic Iasi, Tom LXI (LXV), Construcții de mașini, 2015, pp. 27-36, ISBN 1011-2855.

[7] Teodor, V., Frumuşanu, G., Oancea, N., Berbinschi, S., *Analytical Method to Profile the Hob Mill Generating an Ordinate Whirl of Surfaces with Non-Involute Profile*, Proceedings in Manufacturing Systems, vol. 10, issue 2, 2015, pp. 71-76.

[8] Liukshin, V.S., *Theory of Screw Surfaces in Cutting Tool Design*, Mashinostrojenie, Moskov, 1968.

[9] Zimmern B., Granshyam, P., *Design and Operating Characteristics of the Zimmern Single Screw Compressor*, International Compressor Engineering Conference, Paper 16, http://docs.lib.purdue.edu/icec 16;

[10] Jensen, D., A New Single Screw Compressor Design that Enables a new Manufacturing Process, International Compressor Engineering Conference, paper 1306, http://docs.lib.purdue.edu/icec/1306;

[11] Radzevich, S., *Kinematic Geometry of Surface Machining*, CRC Press, 2008, ISBN 978-1-4200-6340-0;

[12] Litvin, F.L., Nava, A., Fan, Q., Fuentes, A., New Geometry of Face Worm Gear Drives with Conical and Cylindrical Worms: Generation, Simulation of Meshing and Stress Analysis, Computer Methods in Applied Mechanics and Engineering, vol. 191, Issue 27-28, April, 2002, pp. 3035-3054;

[13] Litvin, F.L., Argentieri, G., DeDonno, M., Hawkins, M., *Computer design, generation and simulation of meshing and contact of face worm-gear drives*, Computer Methods in Applied Mechanics and Engineering, vol. 189, Issue 3, September, 2000, pp. 785-801;

[14] Litvin, F.L., Fuentes, A., Demengo, A., Vecchiato, D., Fan, Q., *New developments in the design and generation of gear drives*, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2015, pp. 747-757;

[15] Csibi, I.V., Herciu, D.D., Herciu, D., Gruin, C., Sudrijan, M., *Generating the toroidal Worm for grinding the teeth of Face-Gear Drive*, the XIII National Interdisciplinary Conference, Sebeş, 2013, pp. 484-490.

[16] Albu, S.C., Cercetări privind geometria și tehnologia melcilor cilindrici și conici prelucrați pe centre de prelucrare CNC (Researches regarding the geometry and technology of cylindrical and conical worms machined on CNC machining centres), Doctoral Thesis, 2013, Technical University of Cluj-Napoca;

[17] Teodor, V., Popa, I., Oancea, N., *Profiling of End Mill and Planning Tool to Generate Helical Surfaces Know by Sampled Points*, Int. J. of Adv. Manuf. Technol., 2010, 51, pp. 439-452;

[18] Wu, W.F., Feng, Q.K., *Column envelope meshing pair and its design method for single screw compressors*, Journal of Zhejiang University, Science A, ISSN 1673-565X, pp. 31-36.

[19] Oprean, A., ş.a., *Bazele așchierii și generării suprafețelor*, Editura Didactică și Pedagogică, București, 1981.

[20] Secară, Gh., *Proiectarea sculelor așchietoare*, Editura Didactică și Pedagogică, București, 1979;

[21] *** Internet, Grup Renault România, http://www.renault-technologie-roumanie.com/.

[22] *** Internet, SC Sidem Romania, http://www.sidem.be/.

[23] VN Gaitonde, SR Karnik, J Campos Rubio, AM Abrao, A Esteves Correia and J Paulo Davim, *Surface roughness analysis in high-speed drilling of unreinforced and reinforced polyamides*, Journal of Composite Materials, 2011.

[24] Fetecău C., Stan F., Frumuşanu G., Cernega O., *Maşini şi utilaje pentru prelucrarea maselor plastice*, Editura OIDICM, Bucureşti, 1999.

[25] Kurt, M., Bagci, E., Kaynak, Y., *Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes*, International Journal of Advanced Manufacturing Technology, Vol. 40, pag. 458–469, 2009.

[26] Gaitonde VN, Karnik SR, Mata F and Davim JP, *Modeling and analysis of machinability characteristics in PA6 and PA66 GF30 polyamides through artificial neural network*, J. Thermplast. Compos. Mater. 2010; 23: 313–336.

[27] Benardos PG and Vosniakos GC, *Predicting surface roughness in machining - A review*, Int. J. Mach. Tools Manuf. 2003; 43: 833–844.

[28] ***, Standard SR EN ISO 4287:2003, Specificații geometrice pentru produse. Starea suprafeței. Metoda profilului.

> Director de proiect conf. dr. ing. Virgil Gabriel Teodor